Color – More than meets the Eye

Anna Kreofsky
Color R&D Engineer

TOPICS

Brief introduction to RTP Company Color Division

Color Fundamentals
- Three Sciences of Color
- Colorant Types & Limitations
- Evaluation & Control
- Effective Color Communication

Beyond Visible Light
- Near Infrared Attenuation
- Laser Welding
- Laser Marking

Questions

RTP COMPANY COLOR DIVISION

Color virtually all resins
- Engineering resins
- Styrenic resins
- Polyolefin resins

Color in multiple formats
- Masterbatches
- Precolored resins
- Cube blends

Advanced Color Development
- Custom colors
- Multiple light sources
- Regulatory knowledge
 - UL, FDA, USP, RoHS, etc.

GLOBAL COLOR CONSISTENCY

8 Color Labs
- USA, France, China, Singapore, Mexico

Color Control
- Consistent raw materials
- Consistent hardware
- Consistent software
- Global database

Speed
- Fast color matching service
- Transfers across regions
- Global color palette
COLORING OPTIONS

Masterbatches
- Concentrated formulation of colorants and/or additives dispersed in a polymer carrier
- Usage defined by let-down ratio or percentage
- Most widely used form to color commodity resins

Precolor
- Colorants are added to the polymer and extruded
- Ready to use as-is

Cube blend
- Masterbatch is blended with resin (two or more pellet solution)

PRODUCT FAMILIES

Compounds formulated to meet performance requirements, from one property to multiple technologies

TOPICS

Brief introduction to RTP Company Color Division

Color Fundamentals
- Three Sciences of Color
- Colorant Types & Limitations
- Evaluation & Control
- Effective Color Communication

Beyond Visible Light
- Near Infrared Attenuation
- Laser Welding
- Laser Marking

COLOR SCIENCE

Biology
- Color perception

Physics
- Light interactions

Chemistry
- Colorants
BIOLOGY

How do we see color?

Light Source → Object → Observer

Two types of Photoreceptors - Detector

- Rods: Vision at low light levels
- Cones: Sensitive to three colors

Optical nerve sends signal to brain for decoding

PHYSICS

Increasing energy → Increasing wavelength

Gamma rays, X-rays, Ultraviolet, Infrared, Radio waves, Rotor, TV, FM, AM

Visible light: 400 nm, 500 nm, 600 nm, 700 nm

ART OF COLOR

Light behaves like a wave

Color—More than Meets the Eye - Anna Kreofsky
PHYSICS

White light is made up of all wavelengths of visible light. It is separated into individual colors when light passes through a glass prism.

Appears blue
Blue object

Appears black
Black object

SPECTRAL REFLECTANCE

- Spectral reflectance curves produced by spectrophotometer
- Graph shows light reflected from an object at each wavelength
- Each color has a unique spectral curve

CHEMISTRY - COLORANT TYPES

Inorganic Pigments:
- Pigments from various metals or other substances from nature

Organic Pigments:
- Pigments made synthetically

Dyes:
- Synthetic substances that are soluble

ORGANIC VS. INORGANIC

Organic Pigments:
- Small particle size
- Difficult to disperse
- Limited heat stability (300 °C max)
- High color strength
- Light fastness
 - Evaluated on individual basis

Inorganic Pigments:
- Large particle size
- Easy to disperse
- Heat stable
- Weak color strength
- Improved light fastness
DYES

Soluble
 • Migration concerns

High color strength

Transparent

Commonly used in:
 • Styrenic Resins
 • Engineering Resins

COLOR EVALUATION & CONTROL

Visual Color Evaluation
 • Confirmed color vision
 • Color standards for reference
 • Controlled light
 • Agreed upon color space

Instrumental Color Evaluation
 • Calibrated instruments
 • Color standards for reference
 • Controlled temperature
 • Agreed upon color space

ENVIRONMENTAL FACTORS

Observer
 • Each person sees color uniquely

Light Source
 • Different spectral distributions (D65, CWF, Incandescent)

Background
 • Contrast difference makes colors appear different

Viewing Angle
 • Most common 45°

 Keep viewing conditions CONSTANT

SPECIFICATION & TOLERANCES

Numeric Color Modeling

Numeric model provides
 • 3 dimensional color space
 • Quantify colors numerically
 • Can be used for specification, identification, comparison

Several Color Spaces
 • CIE 1931 Yxy
 • CIE L*a*b* 1976
 • CIE LCh
 • CMC l:c 1984
COMMON COLOR TERMS

Hue
- Color perceived

Chroma (Saturation)
- Vividness of a color

Lightness
- Measure of brightness
 (think about gray scale)

Tint: Hue has been lightened
- Pink is a tint of red

Shade: Hue has been darkened
- Maroon is shade of red

COLOR SPACE

CIE 1931 Yxy
- Uses numeric values Yxy
 - Y - Luminance
 - x, y - Chromaticity values
- Only x, y chromaticity values shown
- Hue changes around color gamut
- Chroma increases from center towards edge

CIE L*a*b* Model (Traditional X-Y-Z coordinate system)
- Developed in 1976
- Most popular color space
- Uniform color space
- Identified by numeric values
 - \(L^* \) = lightness to darkness (0-100)
 - \(a^* \) = redness to greenness
 - \(b^* \) = yellowness to blueness
 - \(\Delta E^* \) = total color shift (dimensionless)

COLOR SPACE

LCh Model (cylindrical coordinates r, \(\Phi \), z)

\[
L = L \\
C = \sqrt{a^* + b^*} \\
h^* = \tan^{-1} \left(\frac{b^*}{a^*} \right)
\]
COLOR SPACE

CMC l:c (1984)
- Used for tolerancing
- l:c (lightness:chromaticity) values are typically 2:1
- Provides better agreement between visual and instrumental assessment
- Allows user to vary ellipse tolerance per application

\[\frac{l}{c} = 2:1 \quad \frac{l}{c} = 1.5:1 \]

TOLERANCES

- Tolerances developed around variation in raw materials, processing, customer goals for visual appearance

* Asymmetrical color tolerances are perfectly acceptable to use

COLOR COMMUNICATION

It’s important to specify all targets through color communication

APPLICATION REQUIREMENTS/TARGET

Application Requirements:
- Resin/Compound
- Regulatory Restrictions
- Processing Method
- Secondary Operations

Color Target:
- Grass Green Pantone: 347
- \[L^* = 43 \]
- \[a^* = -22.9 \]
- \[b^* = 26.21 \]
SATISFYING EXPECTATIONS

Color nomenclature:
- Identifies both regulatory and formulation commitment

Lot control:
- Ingredient traceability

Process control:
- Defined manufacturing specifications
- Engineering review during development and continuous improvement
- Contributes to consistency

Color quality control:
- Color meets defined requirements
- Physical properties
- Composition consistency

TOPICS

Brief introduction to RTP Company Color Division

Color Fundamentals
- Three Sciences of Color
- Colorant Types & Limitations
- Evaluation & Control
- Effective Color Communication

Beyond Visible Light
- Near Infrared Attenuation
- Laser Welding
- Laser Marking

Questions

BEYOND VISIBLE LIGHT - IR/NIR

Active 700 – 2500 nm range
Combination of light controlling attributes
Transparent or opaque at specific wavelengths

Commonly used in:
- Fiber optics
- Transmitters/receivers

TRANSMITTANCE

Visible
Infrared

<table>
<thead>
<tr>
<th>Sample Thickness</th>
<th>% Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mm</td>
<td>Unfilled Polycarbonate</td>
</tr>
<tr>
<td></td>
<td>RTP 0399 SC-803660 IR BLACK</td>
</tr>
<tr>
<td></td>
<td>RTP 0399 SC-803660 BLACK</td>
</tr>
<tr>
<td></td>
<td>RTP 0399 SC-803660 IR ABSORBER</td>
</tr>
</tbody>
</table>

Wavelength (nm)
Method for joining thermoplastic parts by using the power of the laser to bond materials

LASER WELDING MECHANISM

A: Light transmits through upper material and is absorbed by lower material

B: Melting pool is created

C: Heats upper layer

D: Melting pool solidifies under external pressure

ADVANTAGES OF LASER WELDING

- Weld complex parts
- No flash is produced
- High-precision joints can be produced (Hermetic seals)
- Resins of different compositions can be joined
- No consumables (adhesives, fasteners, etc.)

ORGANIC VS. INORGANIC

- **IR Transparent Resin:**
 - Amorphous Resins
 - Require the least amount of energy
 - Semi-Crystalline
 - Require more energy due to scattering
 - Welding challenges
 - PEEK, LCP, PPS, etc.
 - Highly crystalline materials have significant scatter

- **IR Absorbing Resin:**
 - All resins...
 - Amorphous
 - Semi-Crystalline
 - ...need IR Absorbing colorants
ORGANIC VS. INORGANIC

IR Reducing:
Glass fibers, glass beads, colorants
Various additives
- UV stabilizers, heat stabilizers, etc.

IR Blocking:
Carbon fiber, minerals, metals, etc.

ONE LIGHT – TWO MARKS

<table>
<thead>
<tr>
<th>Laser energy absorbed causing a reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Charring (dark mark)</td>
</tr>
<tr>
<td>• Foaming (light mark)</td>
</tr>
<tr>
<td>• Ablation (removal of layer, ex. Paint)</td>
</tr>
</tbody>
</table>

Degree of Complexity

- RTP Company has experience with pigment/filler combinations, and loading levels, to support successful welding using both Diode and Nd:YAG lasers
- Color combinations influence complexity of formulation

Basic mechanism

- Charring produces (dark marks)
- Foaming produces (light marks)

No Universal Additives
- Can be combined with other additive technologies
- Unique colors achievable

Marks vary with resin, additive, and color package
Black resin color with light marks:

- PP (Olefins)
- Nylon
- ABS (Specific Grades)
- POM
- PMMA
- Possibly more

Different lasers can be used, Nd:YAG (Neodymium doped Yttrium Aluminum Garnet) is the best compromise of...

- Speed
- Flexibility
- Marking quality

Laser and marking parameters will influence quality of mark

SUMMARY

- RTP Company supplies innovative colors and functional additives
- Color communication is crucial to color matching and tolerancing
- Light attenuation is the selective control of transmission, either by wavelength, intensity, or both
- Three main factors for successful welds: material selection, laser source, joint configuration
- Dark and light marks can be achieved using same laser source with overall goal of a high contrasting mark

QUESTIONS

Any Questions???
Thank You!

akreofsky@rtpcompany.com