An Engineer’s Guide to Specify the Right Thermoplastic

Steve Maki
Vice President Technology
• **Compounder** = We blend thermoplastic resins with fillers, additives, and modifiers

• **Specialty** = We create engineered formulations

• **Independent** = We are unbiased in our selection of raw materials
• Define Compounding
• Plastic Resin Selection Process
• Application Case Studies
• Compounding Performance
• Engineered Thermoplastic Compounds
Compounding Process
YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Raw Materials → Blender → Extruder → Cooling → Pelletizer → Classifier → Finished Product
Compounding Objectives

- Mixing
 - Distributive
 - Dispersive
Compounding Extruders
YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

Single Screw Twin Screw Co-Kneader
• Conductive carbon black surface area = 130 m2/gram
• 34 grams carbon black = surface area of football field (4460 m2)
• Dispersing a 20% carbon black compound is similar to evenly coating a football field with 136 grams of plastic!
Resin Selection
The Dilemma

- 60 Thermoplastic Resins + 100 Additives = 1000’s of Potential Compounds
- Which 1 Do I Choose For My Application???
• Step 1 – Use Resin Morphology

• Step 2 – Use Thermal & Cost Requirements

• Step 3 – Fine Tune & Special Features
The form and structure the molecules of a polymer take upon solidification

Amorphous Semi-Crystalline
Compare

- Molecular Packing (Shrinkage)
- Resistance to Molecular Disentanglement (Chemical/Abrasion Resistance)
- Light Refraction (Opacity)
- Melting Characteristics (Flow)
Morphology Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Amorphous</th>
<th>Semi-Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Shrinkage</td>
<td>✨</td>
<td></td>
</tr>
<tr>
<td>Low Warpage</td>
<td>✨</td>
<td></td>
</tr>
<tr>
<td>Tight Tolerances</td>
<td>✨</td>
<td></td>
</tr>
<tr>
<td>Transparency</td>
<td>✨</td>
<td></td>
</tr>
<tr>
<td>Mold Flow Ease</td>
<td></td>
<td>✨</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td></td>
<td>✨</td>
</tr>
<tr>
<td>Wear Resistance</td>
<td></td>
<td>✨</td>
</tr>
</tbody>
</table>
Morphology Characteristics

Amorphous	**Semi-Crystalline**
Low Shrinkage | ✴
Low Warpage | ✴
Tight Tolerances | ✴
Transparency | ✴
Mold Flow Ease | ✴
Chemical Resistance | ✴
Wear Resistance | ✴

- Lens?
- Fuel Float?
- Lamp Housing?
- Tool Housing?
- Pulley?
- Precision Printer Chassis?
- Intake Manifold?
- Grease Fitting?
- Laptop Cover?
Morphology Of Thermoplastics

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

<table>
<thead>
<tr>
<th>Amorphous</th>
<th>Semi-Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyetherimide (PEI)</td>
<td>Polyetheretherketone (PEEK)</td>
</tr>
<tr>
<td>Polyethersulfone (PES)</td>
<td>Polyphenylene Sulfide (PPS)</td>
</tr>
<tr>
<td>Polysulfone (PSU)</td>
<td>Pollyphthalamide (PPA)</td>
</tr>
<tr>
<td>Amorphous Nylon</td>
<td>Polyamide (PA/Nylons)</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>Polyethylene Terephthalate (PET)</td>
</tr>
<tr>
<td>Acrylonitrile Butadiene Styrene (ABS)</td>
<td>Polybutylene Terephthalate (PBT)</td>
</tr>
<tr>
<td>Styrene Acrylonitrile (SAN)</td>
<td>Acetal (POM)</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Polylactic Acid (PLA)</td>
</tr>
<tr>
<td>High Impact Polystyrene (HIPS)</td>
<td>Polypropylene (PP)</td>
</tr>
<tr>
<td>Acrylic (PMMA)</td>
<td>Polyethylene (HDPE, LDPE, LLDPE)</td>
</tr>
</tbody>
</table>
Plastic Selection Process

• Step 1 – Use Resin Morphology
• Step 2 – Use Thermal & Cost Requirements
• Step 3 – Fine Tune & Special Features
<table>
<thead>
<tr>
<th>Amorphous</th>
<th>Semi-Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyetherimide (PEI)</td>
<td>Polyetheretherketone (PEEK)</td>
</tr>
<tr>
<td>Polyethersulfone (PES)</td>
<td>Polyphenylene Sulfide (PPS)</td>
</tr>
<tr>
<td>Polysulfone (PSU)</td>
<td>Polypthalamide (PPA)</td>
</tr>
<tr>
<td>Amorphous Nylon</td>
<td>Polyamide (PA/Nylons)</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>Polyethylene Terephthalate (PET)</td>
</tr>
<tr>
<td>Acrylonitrile Butadiene Styrene (ABS)</td>
<td>Polybutylene Terephthalate (PBT)</td>
</tr>
<tr>
<td>Styrene Acrylonitrile (SAN)</td>
<td>Acetal (POM)</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Polylactic Acid (PLA)</td>
</tr>
<tr>
<td>High Impact Polystyrene (HIPS)</td>
<td>Polypropylene (PP)</td>
</tr>
<tr>
<td>Acrylic (PMMA)</td>
<td>Polyethylene (HDPE, LDPE, LLDPE)</td>
</tr>
</tbody>
</table>

Commodity (<$1.50) • Engineered ($1.50-$4.00) • High Performance (>=$4.00)
• Step 1 – Use Resin Morphology

• Step 2 – Use Thermal & Cost Requirements

• Step 3 – Fine Tune & Special Features
<table>
<thead>
<tr>
<th>Amorphous</th>
<th>Semi-Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous Nylon</td>
<td>Polyamide (PA/Nylons)</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>Polyethylene Terephthalate (PET)</td>
</tr>
<tr>
<td>Acrylonitrile Butadiene Styrene (ABS)</td>
<td>Polybutylene Terephthalate (PBT)</td>
</tr>
<tr>
<td>Styrene Acrylonitrile (SAN)</td>
<td>Acetal (POM)</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>Polylactic Acid (PLA)</td>
</tr>
<tr>
<td>High Impact Polystyrene (HIPS)</td>
<td>Polypropylene (PP)</td>
</tr>
<tr>
<td>Acrylic (PMMA)</td>
<td>Polyethylene (HDPE, LDPE, LLDPE)</td>
</tr>
</tbody>
</table>

Commodity (<$1.50) • Engineering ($1.50-$4.00)
Styrenic Features

- **Morphology Features** – Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent (except HIPS & ABS), Poor Chemical & Abrasion
 - **PS** – Good Transparency @ Low Cost, Brittle
 - **HIPS** – Moderate Impact Resistance @ Low Cost
 - **SAN** – Good Transparency, Slightly Better Chemical Resistance, Brittle, Low Cost
 - **ABS** – Excellent Impact Resistance & Gloss, Slightly Better Chemical Resistance, Low-Moderate Cost
• **Morphology Features** – Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent, Poor Chemical & Abrasion

 – **PMMA** -- Optical Quality Transparency, Excellent UV Stability, Brittle, Low Cost
• **Morphology Features** – Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent, Poor Chemical & Abrasion

 – **PC** -- Optical Quality Transparency, High Impact Resistance, Moderate Cost
• **Morphology Features** – Excellent Chemical Resistance, Excellent Abrasion Resistance, Good Flow in Thin Mold Sections, Poor Dimensions

 – **PP** -- Low Density, Better Thermal Resistance Than PE, Living Hinge Capable, Brittle @ Low Temperatures, Low Cost

 – **HDPE** -- Good Low Temp Impact Performance (Tg = -77°C vs -9°C for PP), Low Cost
• **Morphology Features** – Excellent Chemical Resistance, Excellent Abrasion Resistance, Good Flow in Thin Mold Sections (Except Amorphous Nylon), Poor Dimensions

 – **Nylon 6** -- Strong/Stiff (But Humidity Dependent), Good Surface Finish Even When Reinforced, Moderate Cost

 – **Nylon 66** -- Strong/Stiff (But Humidity Dependent), Higher Thermal Than 6, Mod. Cost

 – **Nylon 6/12, 11, 12, etc.** – Less Sensitive to Humidity, High Cost
• **Morphology Features** – Low Shrink, Low Warp, Tight Dimensional Tolerances, Transparent, Poor Abrasion

 — *Amorphous Nylon* -- Good Chemical Resistance for Amorphous Morphology, Moderate-High Cost
Polyester Features

- **Morphology Features** – Excellent Chemical Resistance, Excellent Abrasion Resistance, Good Flow in Thin Mold Sections, Poor Dimensions

 - **PET** -- Difficult to Mold (Poor Nucleation & Hydrolysis), Good Electrical Resistance, Mod. Cost

 - **PBT** -- Easy to Mold, Good Electrical Resistance, Properties & Dimensions Do Not Fluctuate With Humidity (Same For PET), Moderate Cost

 - **PLA** – “Green” Polymer, Poor Impact, Poor Heat Resistance, Difficult to Mold (Poor Nucleation & Hydrolysis), Low Cost
• **Morphology Features** – Excellent Chemical Resistance, Excellent Abrasion Resistance, Good Flow in Thin Mold Sections, Poor Dimensions

 – **Acetal** – Low Friction & Wear, Excellent Resiliency & Fatigue Endurance, Moderate Cost
Putting It All Together

• Step 1 – Use Resin Morphology
• Step 2 – Use Thermal & Cost Requirements
• Step 3 – Fine Tune & Special Features

Test Your Knowledge With Application Examples
Case Study

- **CD Jewel Case**
 - Transparent
 - Flat & Dimensionally Stable
 - Low Cost

- **PS**
Case Study

- **Gas Tank**
 - Good Chemical Resistance
 - Good Low Temperature Impact
 - Low Cost

- **HDPE**
Case Study

- Auto Tail Lamp Cover
 - Transparent Colors
 - Dimensionally Stable
 - Excellent UV
 - Low Cost

- PMMA
Case Study

- Plastic Glass Tumblers
 - Transparent
 - Reasonable Thermal & Chemical Resistance (Dishwasher Cycles)
 - Low Cost

- SAN
Case Study

• Sump Pump Housing
 – Chemical Resistance
 – Reasonable Thermal Resistance
 – Low Cost

• PP + GF
Case Study

• Safety Glasses
 – Optical Transparency
 – High Impact
 – Moderate Cost OK

• PC
Case Study

• Truck Wheel Odometer Lens
 – Transparent
 – Good Chemical Resistance
 – Moderate-High Cost OK

• Amorphous Nylon
• Chemical Beakers
 – Excellent Chemical Resistance
 – Low Cost
 – Transparent

• ?????????
Case Study

• Nail Gun Housing
 – Good Chemical Resistance
 – Excellent Strength, Stiffness & Impact
 – Good Surface Finish When Reinforced
 – Moderate Cost OK

• Nylon 6 + GF
Case Study

• Automotive Intake Manifold
 – Chemical Resistance
 – Excellent Strength, Stiffness & Impact
 – Moderate Heat Resistance
 – Moderate Cost OK

• Nylon 66 + GF
Case Study

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

• Oil Pan
 – Chemical Resistance
 – Excellent Strength, Stiffness & Impact
 – Moderate Heat Resistance
 – Moderate Cost OK
 – Extremely Tight Dimensions & Flat

• ??????????
• Electrical Connectors
 – Good Flow in Thin Walls
 – Excellent Electrical Properties
 – Dimensionally Stable in Humidity
 – Moderate Cost OK

• PBT (PET) + GF + FR
Case Study

• **Conveyor Rollers**
 – Good Abrasion Resistance
 – Low Wear & Friction
 – Moderate Cost OK

• **Acetal**
• Printer Gears
 – Extremely Tight Dimensions
 – Moderate Cost OK
 – Good Abrasion Resistance
 – Low Wear & Friction

• ??????????
Case Study

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- **Lawn Tractor Hood**
 - Tight Dimensions & Low Warp
 - Moderate Cost OK
 - Chemical Resistance
 - Good Mold Flow
 - High Impact

- ???????????
Overcoming Morphology Deficiencies Via Compounding
Morphology Deficiencies

<table>
<thead>
<tr>
<th></th>
<th>Amorphous</th>
<th>Semi-Crystalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Shrinkage</td>
<td>✭</td>
<td>D</td>
</tr>
<tr>
<td>Low Warpage</td>
<td>✭</td>
<td>D</td>
</tr>
<tr>
<td>Tight Tolerances</td>
<td>✭</td>
<td>D</td>
</tr>
<tr>
<td>Transparency</td>
<td>✭</td>
<td>D</td>
</tr>
<tr>
<td>Mold Flow Ease</td>
<td>D</td>
<td>✭</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>D</td>
<td>✭</td>
</tr>
<tr>
<td>Wear Resistance</td>
<td>D</td>
<td>✭</td>
</tr>
</tbody>
</table>
• Can We Reduce Shrink Rate & Improve Dimensional Stability of Semi-Crystalline Resins?
Fiber Reduces Shrink

Shrink Rate \(X \neq \) Shrink Rate \(Y \) → Warp
Warp Control

Shrink Rate X = Shrink Rate Y → Flat Part

But Low Strength!
Common Loading = 15% Glass Fiber & 25% Mineral or Beads
Case Study

• Oil Pan
 – Chemical Resistance
 – Excellent Strength, Stiffness & Impact
 – Good Heat Resistance
 – Moderate Cost OK
 – Extremely Tight Dimensions & Flat

• Nylon 66 + 15% GF + 25% Mineral
• Can We Make A Semi-Crystalline Resin Transparent?
Compounding nucleator into PP or PE controls crystal size to less than wavelength of light = Transparency

 Courtesy Milliken Chemical
• Chemical Beakers
 – Excellent Chemical Resistance
 – Low Cost
 – Transparent

• PP + Nucleator
• Can We Improve Chemical Resistance & Mold Flow of Amorphous Resins?
• **Alloy PC with ABS**
 – RTP 2500 A Series

<table>
<thead>
<tr>
<th>Property</th>
<th>PC</th>
<th>PC/ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, psi</td>
<td>9000</td>
<td>8900</td>
</tr>
<tr>
<td>Flexural Mod, E6 psi</td>
<td>0.34</td>
<td>0.40</td>
</tr>
<tr>
<td>Izod Impact, ft lb/in</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>HDT @ 264 psi,°F</td>
<td>270</td>
<td>210</td>
</tr>
<tr>
<td>Fuel Resistance</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Melt Flow, gm/10 min</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Clarity</td>
<td>Transparent</td>
<td>Opaque</td>
</tr>
</tbody>
</table>
• **Alloy PC With Polyester (PBT or PET)**
 – RTP 2099 X 63578 B

<table>
<thead>
<tr>
<th>Property</th>
<th>PC</th>
<th>PC/PBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, psi</td>
<td>9000</td>
<td>8700</td>
</tr>
<tr>
<td>Flexural Mod, E6 psi</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>Izod Impact, ft lb/in</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>HDT @ 264 psi, °F</td>
<td>270</td>
<td>250</td>
</tr>
<tr>
<td>Fuel Resistance</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Melt Flow, gm/10 min</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Clarity</td>
<td>Transparent</td>
<td>Opaque</td>
</tr>
</tbody>
</table>
• Lawn Tractor Hood
 – Tight Dimensions & Low Warp
 – Moderate Cost OK
 – Chemical Resistance
 – Good Mold Flow
 – High Impact

• PC/PBT Alloy
Case Study

- GPS Housing
 - Tight Dimensions & Low Warp
 - Moderate Cost OK
 - Good Mold Flow
 - High Impact
- PC/ABS or PC/PBT Alloy
 - Want Sustainability
- PC/PLA Alloy (30% Bio)
 - Want More Sustainability
- Recycled (PCR) PC/PLA Alloy
 (30% Bio + 60% PCR = 90% Sustainable)
• Can We Make An Amorphous Resin Wear Resistant?
• Compound PTFE Into PC
 – RTP 300 TFE 15

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>PC/15 PTFE</th>
<th>Acetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear Factor</td>
<td>560</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>Dynamic Coef. of Friction</td>
<td>0.60</td>
<td>0.33</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Case Study

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

- Printer Gears
 - Extremely Tight Dimensions
 - Moderate Cost
 - Good Abrasion Resistance
 - Low Wear & Friction

- PC + PTFE
• Intro To Compounding
• The Dilemma
• Resin Selection Procedure
 – Resin Morphology
 – Resin Performance (including cost)
 – Unique Resin Features
• Application Case Studies
• Compounding in Performance
 – Overcoming Resin Deficiencies
Questions?

Steve Maki
smaki@rtpcompany.com
(507) 474-5371