RTP Company Eco Solutions

Eco-Friendly, Engineered Plastic Solutions

Will Taber, Business Manager–Emerging Technologies

Agenda

• RTP Company
• What are Eco Solutions?
• What is green?
• Bioplastic compounds
• Recycle content compounds
• Cellulose Fiber Reinforced PP
• Future development work
• Economics
• Summary

Profile

• RTP Company is an independent, privately owned custom compounder.
• Global manufacturing and engineering support
• Worldwide sales representation/distribution
• Established in 1982
• 1000+ employees
• $400+ million annual sales
RTP Company Eco Solutions

Custom Solutions

- High-tech specialty compounder
 - 60+ engineering resins
 - 100+ modifiers
- Annual production
 - 6000+ commercial products
 - 1750+ new products each year

Global Manufacturing

United States • Mexico • France • Germany • China • Singapore

Agenda

- RTP Company
- What are Eco Solutions?
 - What is green?
 - Bioplastic compounds
 - Recycle content compounds
 - Cellulose Fiber Reinforced PP
 - Future development work
 - Economics
 - Summary

Eco Solutions “Green” Compounds

Our Eco Solutions portfolio consists of compounds that utilize
- Renewable or biobased content
- Recycled content
- Halogen-free additives
- Natural fibers
- Combinations of bioplastic, recycled, halogen-free, natural fiber
What does “green” mean?
• Depends on industry, products, and capabilities
• Infers that a product is more environmentally friendly
 – Examples: less energy consumed, less CO₂ produced, made from a renewable resource etc...
• Eco Solutions are our products (capabilities) we can utilize to help your customers produce a “green” product
“Green” Products

- Product certifications provide credibility
 - USDA BioPreferred, EPEAT (US)
 - Vincotte, C2C (Europe)
 - Japan BioPlastics Association (Japan)
 - BIFMA (Business and Institutional Furniture Mfg. Assoc.)
 - All of the above value and or certify recycle content, biobased content or both

- Certifications provide proof a product meets a set of “green” criteria

Bioplastic Compounds

- Definitions
- Types
- Strategy
- Product portfolio
- Applications
- Information
- Limits of use

Bioplastics – Defined

- Bioplastics are a form of plastics derived from renewable (annually) biomass sources such as corn, wheat, sugar cane, and sugar beets rather than traditional plastics derived from petroleum
- Some, but not all, bioplastics are designed to biodegrade.

Economics, availability, and performance has placed an emphasis on
Polylactic Acid (PLA)
Biobased versus Biodegradable

<table>
<thead>
<tr>
<th>Biobased</th>
<th>Biodegradable</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PLA</td>
<td>• PLA (via industrial composting)*</td>
</tr>
<tr>
<td>• Nylon (11, 6/10)</td>
<td>• PBS</td>
</tr>
<tr>
<td>• PTT</td>
<td>• PHA (via “backyard” composting)</td>
</tr>
<tr>
<td>• PHA</td>
<td>• Thermoplastic starch</td>
</tr>
<tr>
<td>• PE</td>
<td></td>
</tr>
<tr>
<td>• PBS</td>
<td></td>
</tr>
<tr>
<td>• Thermoplastic starch</td>
<td></td>
</tr>
</tbody>
</table>

* Not biodegradable in household waste sanitary landfill

How Do We Report Biocontent?

- **Renewable resource content (weight%)**
 - Tells how much of the compound by weight is a renewable or biobased plastic (e.g., 30% PLA and 70% PC)

- **Biobased carbon content**
 - Per ASTM D 6866 – Distinguishes “new” carbon vs “old”
 - Reports renewable carbon content as a % of total carbon content
 - Does not consider product weight
 - Does not measure biodegradability
 - Does not take into account non-organic (carbon) elements such as oxygen, hydrogen or silicon (glass)
 - Can provide different results vs weight%

Where Does RTP Fit?

- **Base Resins**
 - PLA, Nylon 11, Nylon 6/10, PTT, PE.

- **Semi-durable and durable applications**
 - Office furniture, appliance, consumer electronics, niche “green” electronics in controlled environments.

- **Custom Compounds**
 - Structural, impact modified, mineral, FR, conductive, wear, recycled content.

- **Current Focus PLA**
 - Good economics, good supply, easy to modify, advancements in compounding and polymerization.

PLA Compound Portfolio

- **Glass reinforced**
- **Impact modified – Performance (high HDT)**
- **Impact modified – Translucent**
- **Impact modified – Opaque**
- **Impact modified – FDA compliant**
- **Alloys**
Glass Reinforced PLA

Market: Consumer
Application: Scissors Handle
Problem: Biobased material to replace glass reinforced PP
Solution: RTP 2000 Series 30% glass reinforced PLA
Benefit: Superior strength and stiffness vs 30% glass PP. Nucleated for improved cycle time. 68% renewable resource content

Impact Modified PLA

- Nucleated
- Mineral reinforced
- FDA compliant ingredients
- Opaque or translucent
- Colorable and glossy
- Injection or extrusion
- Balance cost, properties, biocontent

Impact Modified PLA Portfolio

Extensive portfolio can be modified to meet specific economic and performance targets
RTP Company Eco Solutions

High Performance PLA

Increased rate and degree of crystallization yields:

- Reduced cycle time
- Higher HDT with lower cost nucleators
- Improved hydrolysis resistance?

*2099132557A: standard impact mineral reinforced

Impact Modified PLA Application

- **Market:** Sporting Goods
- **Application:** Bicycle Helmet
- **Problem:** High biobased content. Good durability, gloss and color. Option to paint.
- **Solution:** RTP 2000 Series Impact Modified PLA
- **Benefit:** 79% renewable content, excellent balance of strength and toughness. Good flow for thin walls. Glossy and colorable

Impact Modified PLA Application

- **Market:** Sporting Goods
- **Application:** Promotional Divot Tool
- **Problem:** High biobased content. Good durability, gloss and color
- **Solution:** RTP 2000 Series Impact Modified PLA
- **Benefit:** 84% renewable content, excellent balance of strength and toughness. Good flow for thin walls. Glossy and colorable

PLA Alloys

- PLA/PC
- PLA/PC (recycled PC)
- PLA/PC FR (non-hal V-0)
- PLA/PC FR (non-hal V-0, recycled PC)
- PLA/PMMA (clear and impact opaque)
- PLA/PE
RTP Company Eco Solutions

PLA/PC Alloys

• PLA-PC Alloys Balance Renewable Content With High Impact Strength and Heat Deflection Temperature

<table>
<thead>
<tr>
<th>Renewable Resource Content</th>
<th>Notched IZOD (ft-lbs/in)</th>
<th>73F</th>
<th>HDT at 66 psi (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>0%</td>
<td>4</td>
<td>206</td>
</tr>
<tr>
<td>PC-ABS</td>
<td>0%</td>
<td>0%</td>
<td>255</td>
</tr>
<tr>
<td>PLA-PC Alloy</td>
<td>32%</td>
<td>16%</td>
<td>230</td>
</tr>
</tbody>
</table>

PLA Compounds Limits of Use

• Suitable for applications requiring:
 – High impact and stiffness
 – High gloss and colorability
 – FDA compliant ingredients
 – Products with renewable/sustainable resource content
 – Moldability in existing tools
 – Use in a controlled environment, ie: home, office

• Not suitable for applications requiring:
 – Extended exposure to high heat and humidity. Consult with R&D to determine limits for your particular application
 – Applications requiring biodegradability in landfill at ambient temps

Market: Consumer Electronics
Application: Portable Electronics Housing
Problem: Biobased content with good balance of stiffness, impact and heat deflection temperature. Moldable in existing tooling
Solution: RTP 2000 Series PLA/PC Alloy
Benefit: 32% renewable resource content. 14 ft-lbs/in notched izod with a 240°F (115°C) HDT. Processed in existing tooling with added benefit of being overmoldable with soft touch elastomer
New PLA Products

- High gravity
- Permanently anti-static
- PLA/acrylic sheet compound
- Improved FR PLA/PC
- Recycle content

PLA Compounds – Information

- Updated bio-compounds innovation bulletin
- Glass reinforced bulletin
- Impact modified bulletin
- USDA product listings
- Processing guide
- Regrind studies
- Sample plaques
- Product data sheets

Biobased PE Compounds

- Advantages
 – Biobased
 – Recyclable
 – Composition same as Petroleum PE
 – Properties, and processing
 – Cost relative to other biobased plastics
- Disadvantages
 – Some unknowns in supply
 – Compostability

Biobased PE Compounds

Glass Reinforced Bio PE vs Glass PP

- Tensile Strength
- Notched Izod ft-lbs/in
RTP Company Eco Solutions

Agenda

• RTP Company
• What are Eco Solutions?
• What is green?
• Bioplastic compounds
• Recycle content compounds
 • Cellulose fiber reinforced PP
 • Future development work
 • Economics
 • Summary

Recycled Content Compounds

• RTP Company Strategy
• Source Certification
• Portfolio
• Considerations

Recycled Content Strategy

• Provide a means for customers to “green” their product via recycle content
• FTC guidelines – type/amount, substantiation
• Utilize pre- and post-consumer:
 – PP, Nylon6, Nylon 6/6, PC, PET
• Pursue “one off” opportunities as presented
• RTP Company is a compounding who can utilize recycled content to add value... not a recycler
Recycled - Source Certification

Recycled Content - Considerations

- Supply and pricing is dynamic
- Can be difficult to verify source
- Post Consumer is more highly valued than Pre Consumer but generally more variable in properties and higher levels of contamination
- Post Consumer compounds limited to black
- Consider tradeoffs between recycle content and performance...RTP can help to overcome limitations!
- Opportunity for cost parity with complex compounds and provide a “green” angle... ie impact modified, FR, wear, conductive.

Recycled Content Product Portfolio

- Post-consumer content
- Limited to black
- Can provide lot COA with type and amount of recycle
- Directed at applications where PCR recycle content is key
- Not necessarily lowest cost
- Limited feedstock availability in Europe/Asia

<table>
<thead>
<tr>
<th>Post-Consumer Recycle Content Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
</tr>
<tr>
<td>20% glass</td>
</tr>
<tr>
<td>30% glass</td>
</tr>
<tr>
<td>40% glass</td>
</tr>
<tr>
<td>60% glass</td>
</tr>
<tr>
<td>60% glass</td>
</tr>
<tr>
<td>glass/monomer 70/30</td>
</tr>
<tr>
<td>glass/monomer 50/50</td>
</tr>
<tr>
<td>glass/monomer 30/70</td>
</tr>
<tr>
<td>glass/monomer 10/90</td>
</tr>
<tr>
<td>glass/monomer 50/50</td>
</tr>
<tr>
<td>glass/monomer 70/30</td>
</tr>
<tr>
<td>glass/monomer 50/50</td>
</tr>
<tr>
<td>glass/monomer 30/70</td>
</tr>
<tr>
<td>glass/monomer 10/90</td>
</tr>
<tr>
<td>glass/monomer 50/50</td>
</tr>
</tbody>
</table>

Recycled Content Application

- Market: Sports and Recreation
- Application: Kayak Paddle
- Problem: Very high strength and rigidity with good surface finish
- Solution: RTP 200 A Series carbon fiber reinforced compound
- Benefit: Excellent balance of properties and surface finish while utilizing recycled carbon fiber content
RTP Company Eco Solutions

Agenda

• RTP Company
 • What are Eco Solutions?
 • What is green?
 • Bioplastic compounds
 • Recycle content compounds
• Cellulose fiber reinforced PP
 • Future development work
 • Economics
 • Summary

Cellulose Fiber Reinforced PP

Benefits vs Glass Reinforced PP

Benefits vs Other Natural Fillers

Cellulose Fiber Reinforced PP vs Glass Fiber PP

Cellulose PP vs Talc PP
RTP Company Eco Solutions

Cellulose Fiber PP Compounds

- **Base Resin**
 - Homopolymer (standard and high flow)
 - Copolymer
 - Recycle content
- **Fiber**
 - Cellulose (5% - 40%)
 - Cellulose + glass
- **Other**
 - Color (precolor or concentrate)
 - Elastomer overmold

Cellulose Fiber PP Application

- **Market:** Furniture
- **Application:** Chair
- **Problem:** Produce an eco-friendly product with that has mechanical properties similar to 20% glass reinforced PP that can be molded via gas assist
- **Solution:** RTP 100 Series 30% Cellulose fiber reinforced Homopolymer PP
- **Benefit:** Superior properties and processing versus wood flour PP with equivalent stiffness to glass reinforced PP and good colorability. Molded via gas-assist with improved cycle time versus glass PP

- **Market:** Lawn and Garden
- **Application:** Weeding Tool
- **Problem:** Produce an eco-friendly product with that has good mechanical properties and “natural” look
- **Solution:** RTP 100 Series Cellulose fiber reinforced PP
- **Benefit:** Superior properties and processing versus wood flour PP with good colorability
RTP Company Eco Solutions

Agenda

- RTP Company
- What are Eco Solutions?
- What is green?
- Bioplastic compounds
- Recycle content compounds
- Cellulose Fiber Reinforced PP
- Future development work
- Economics
- Summary

Development Work

- Higher HDT (crystallinity) PLA
- Lower cost nucleators
- Improved stabilization of PLA
- Biobased olefin compounds
- PCR feedstreams
- Lower cost FR PLA/PC

Eco-Friendly Compound Economics

- Cost
- Bio-based Nylon/PTT
- PLA Alloys Nucleated PLA
- Impact PLA
- Cellulose Fiber PP
- Recycle Content
- Economics
- Summary
Economic Fits

Yes:
- Recycle content
- PLA compounds
 - (antistatic, lubricated, precolor)
- BIO PE compounds
- Cellulose PP vs Glass PP

No:
- Commodity PP, HIPS, ABS

Agenda

- RTP Company
- What are Eco Solutions?
- What is green?
- Bioplastic compounds
- Recycle content compounds
- Cellulose fiber reinforced PP
- Future development work
- Economics
- Summary

Summary

- The “green” movement is approaching a “tipping point”
 - Knowledge of “green” products and benefit
 - Technical feasibility
 - Economic viability
 - Visibility via first movers

- RTP Company has many hard to replicate assets that can be used to achieve your “green” initiatives
 - Formulation and compounding knowledge
 - Key supply relationships
 - Worldwide mfg., tech service, and R&D
 - An entrepreneurial spirit
 - How can we help you meet your sustainability objectives?
Questions?

Will Taber, Business Manager–Emerging Technologies
wtaber@rtpcompany.com, (816) 591-7181

Dr. Chuck Orr, Sr. R&D Engineer
corr@rtpcompany.com, (507) 474-5371

www.rtpcompany.com