ENGINEERED PLASTICS WORKSHOP

Learn About Thermoplastics | Connect with Experts

2017 KING OF PRUSSIA / PENNSYLVANIA
(PHILADELPHIA AREA)

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS
Everything You Need to Know about TPEs

Paul Killian | Business Manager - TPE
pkillian@rtpcompany.com
(507) 474-5490

2:30 p.m.
Everything you need to know about TPEs

Paul Killian
Business Manager - TPE

AGENDA
- Establish a Definition
- Understanding how TPEs work
- TPE Types
- RTP Company Product offering
 - Additive Capability
 - Styrenic Based TPEs
 - TPV Alloys
 - Bondable Technology

GOALS
- A basic understanding of various TPEs
- Relate this knowledge to the RTP Company TPE product line

DEFINITION

THERMOPLASTIC ELASTOMER

“...Having the property of softening or fusing when heated and of hardening again when cooled…”

“...Any of various elastic substances resembling rubber…”

Int’l Inst. of Synthetic Rubber Producers (IISRP) definition:

“Polymers, polymer blends or compounds which, above their melt temperatures, exhibit thermoplastic character that enables them to be shaped into fabricated articles and which, within their design temperature range, possess elastomeric behavior without cross-linking during fabrication. The process is reversible and the product can be reprocessed and remolded.”

WHAT IS TPE

A diverse family of rubber like materials that, unlike conventional vulcanized rubber, can be processed and recycled like thermoplastic materials.

Thermoset

Thermoplastic
TPEs are composed of hard and soft domains; they are multiphase materials in their solid state.

Hard phase contributes “plastic” properties such as:
- High-temperature performance
- Thermoplastic processability
- Tensile strength
- Tear strength

Soft phase contributes “elastomeric” properties:
- Low-temperature performance
- Hardness
- Flexibility
- Compression & tension set

The design temperature range of a TPE is bounded by the glass transition temperature of the rubbery phase and the glass transition or melt temperature of the hard phase.

By raising the temperature of the TPE above the glass transition or melting temperature of the plastic phase.
And applying shear forces typical of thermoplastic processes.

By comparison, thermoset rubbers (TSRs) are single phase materials with non-reversible chemical (covalent) bond cross-links.

And are unaffected by shear forces.

Or increasing heat...
LINEAGE (ALPHABET SOUP)

TPE

SBC

TPU

SBS

SBS

SEBS

OBC

SEPS

TPV

TPV

SIBS

SEEPS

PEBA

TEO

OLEFINIC

PVC/NBR

ETPV

MPR

PA / ACM

TPO

“Plastomer”

ester

ether

aliphatic

LINEAGE (ALPHABET SOUP)

Most Commonly seen as compounds

NEAT POLYMER VS COMPOUND

NEAT POLYMER

Created in a reactor, polymerizing thermoplastics chemically from feedstock

COMPOUND

Using a mechanical mixing process to improve one or more neat polymers

CLASSIFICATION & NOMENCLATURE

• Performance (heat & oil resistance following ASTM, SAE, etc.)
• Chemistry (styrenic, olefinic, urethane, etc.)
• Structure
 • Block copolymers
 • Blends & alloys
 • Dynamic vulcanizates

Engineered Plastics Workshop

Everything You Need to Know about TPEs - Paul Killian

99
Block Copolymers - Mechanism

Block copolymer based TPEs are made of polymers that have both hard (semi-crystalline or glassy) blocks and soft (amorphous) blocks along the backbone.

s-s-s-s-h-h-h-h-s-s-s-s-s-h-h-h-h

In the bulk, as they cool from the melt, the hard blocks will coalesce into crystalline or glassy domains creating physical crosslinks.

The soft blocks are left to form amorphous rubbery domains that provide the elastomeric bridges between the crystalline domains.

Block Copolymers - Examples

Styrenic block copolymers “SBC”
- SBS, SEBS, SIS, SIBS, SEEPS (neat rubber)
 - Rarely used in their neat form
Polyolefin elastomer “POE”
Thermoplastic urethane “TPU”
Copolyether-ester “COPE”
Polyether-block-amide “COPA” or “PEBA”

Blends & Alloys - Examples

Styrenic block copolymers “SBC”
- SBS, SEBS, SIS, SIBS, SEEPS
- Most frequently compounded with PP, PE, or POE

Bondable TPES
- Polabond™
- Nylabond™

Focus – SBC Based TPEs

Composition
- OIL (white mineral, other)
- SBC POLYMER(S) (type, MW, and structure)
- FILLER (CaCO₃, talc, none)
- POLYPROPYLENE (lots of choices)
- Stabs, pigments, etc

Design Flexibility
- Hardness – Gels (Shore OOO) to 50D
- Viscosity – Extrusion to ultra-high flow
- Clarity – Opaque to water clear
- Properties – Tailored elasticity, strength
- Feel – Super grippy to dry
- Fillers – Throw in the kitchen sink

Strengths
- Elasticity– Highly elastic to “dead”
- Versatility– Broad range of customizations
- Low temp and RT – Great CS and flexibility
- Cost– General purpose to boutique compounds
- Aesthetics– Excellent moldability, consistency
- Colorability– Very bright colors possible
- Bond to PP

Limitations
- Oil resistance– High affinity for absorption
- High Temp– Max CUT ~100C
- High Temp #2– Properties drop off as temp ↑
- Reputation– A few bad apples . . .
- Balance – Formulations flexibility is capped by inverse requirements – no free lunch

Everything You Need to Know about TPEs - Paul Killian
Dynamic Vulcanizates - Morphology

Coarse morphology - TPO

- Simple melt-mixing
- Rubber domains
- Thermo-plastic matrix

Fine morphology - TPV

- Dynamic vulcanization
- Vulcanized rubber domains
- Thermoplastic matrix

Focus – TPVs

<table>
<thead>
<tr>
<th>COMPOSITION</th>
<th>DESIGN FLEXIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDM RUBBER (non-vulcanized bale)</td>
<td>Hardness</td>
</tr>
<tr>
<td>POLYPROPYLENE (usually GP grades)</td>
<td>Viscosity</td>
</tr>
<tr>
<td>FILLER (CaCO3 or talc, low %)</td>
<td>Clarity</td>
</tr>
<tr>
<td>CURE PACKAGE (phenolic, peroxide, etc)</td>
<td>Properties</td>
</tr>
<tr>
<td>Oil (generally low % add)</td>
<td>Feel</td>
</tr>
<tr>
<td>Stabs, pigments, etc</td>
<td>Fillers</td>
</tr>
</tbody>
</table>

Strengths

- “Industrial” – Higher temp property retention
- Long term stability (think auto)
- Great inherent UV stability
- Chemical and oil resistance
- Rubber-like – Most similar TPE to rubber
- Commoditized – Most similar TPE to rubber
- Standard products and stocks
- Bond to PP

Limitations

- Customization – Technology and mfg limited
- Aesthetics – Shear sensitivity and gate defects
- RM flexibility – TPV does not drive inputs
- Color – Opaque natural, cure technology driven
- Regulatory vs Cost – Control capable, but “true” TPV has major cost implications

TPE Design Flexibility

- Design Flexibility is a key component in leveraging the value of TPEs
- Mass Reduction
- Complex Geometries
- Multi-Material Design
Keep in mind: This is a broadbrush of many (very) different technologies that make up generic “TPE”, relative to many (very) different technologies making up thermoset elastomers.

PROS
- Recyclable
- Mass reduction
- Manufacturing cost
- Design flexibility

CONS
- High Temp performance
- Material cost
- Elastomeric properties
- No in-house compounding

TPEs are not a one-to-one replacement for Thermoset Elastomers
Proper material selection is highly dependent on the application requirements, design, and ability to take advantage of the strengths inherent to TPE or Thermoset Elastomers.

RELATIVE VALUE OF TPE

- PEBA
- COPE
- TPU
- TPV
- MPR
- SEBS
- PVC/NBR
- TPO
- POE
- SBS

Performance = heat & oil resistance

THE PROBLEM WITH HARDNESS

TPE Strength and Hardness Comparison

Performance = low modulus
THE PROBLEM WITH HARDNESS

RTP Company has been built on several basic principles:

- Independent, Value Added Custom Compounding
- Incorporating Specialty Additives into a Wide Variety of Base Resins
- Very Highly Focused on (and invested in) R&D, Technology, and Engineering

STYRENIC BASED TPEs

RTP 2700 S & 2740S Standard Products

- RTP 2700 S Series - 30A to 80A unfilled
 - translucent to clear, low gravity, excellent elasticity
 - Medical and FDA compliant grades available (MD and Z)
- RTP 2740 S-HF Series – 30A to 90A filled SBC
 - opaque, higher gravity, FDA compliant grades available

2799 SX Design Flexibility

- Water clear
- increased elasticity
- low hardness + strength
- EU food contact compliant
- processing tweaks
- Haptics (touchy-feely)

Attributes

- highly elastic
- highly customizable
- design flexibility
- broad cost spectrum
- great RT compression set

VULCANIZATE BASED TPEs

Permaprene™ 2800 B & 2840 B Standard Products

- Permaprene™ 2800 B Series - 45A to 50D TPV Products
 - HF grades preferred for cost & appearance improvement
 - FDA compliant grades available in non-HF only
- Permaprene™ 2840 B Series – 55A to 90A TPV VA/VE Option
 - higher gravity, lower temp, good extrusion, smoother feel

2899 X Design Flexibility

- targeted viscosity
- targeted properties
- improved UV (good to great)
- application tailoring
- splitting the difference
- Haptics (touchy-feely)

Attributes

- broad temp range
- improved chem resistance
- easily colorable
- broad cost spectrum
- great RT compression set
NYLABOND™

Nylabond™ 6091 Series: Nylon Bondable TPVs
- Formulated specifically for melt bonding to Nylon 6 and 6/6
- Available in durometer levels of 55A to 85A
- TPV based product based on Santoprene® technology
- Market leading technology, unequalled property set
- Significant value in automotive – temp & chem resistance

Automotive Specifications
- GMW 15817 Type 1
- GMW 15817 Type 2
- MSAR 100 AAN
- MSAR 100 BAN
- MSAR 100 CAN
- VW 50123 Conformance
- Daimler DBL5562-30
- SAE J200 callouts
- ASTM D4000 callouts

Attributes
- Superior heat resistance
- Superior chemical resistance
- Superior compression set
- Automotive approvals

Polabond™

Polabond 6042 Series: ABS, PC, and PC/ABS Bondable SEBS Alloys
- Excellent Bonding due to unique technology
- Great grip and feel, very durable
- Good aging properties relative to competitors
- Excellent processability and aesthetics
- Specialty versions available for unique applications

Polabond 6041 Series - 55A and 70A TPV based
- Excellent Bonding to PC, ABS, PMMA, RTPU
- Premium polar bonding product
- Excellent chemical resistance at high temps
- Superior weatherability

Attributes
- RTP Company offers multiple technology platforms
- Variety of feel and performance
- Colorability
- Excellent bond strength in both insert and multishot processes

ADDITIVE INCORPORATION

RTP Company’s Bread & Butter, Applied to TPE
- Strong market leadership
- Leverage expertise and resources
- Deliver unique solutions & functionality

Precolor anything
Conductive anything
Glass RTPU
Wear RTPU / COPE
CoF modified TPEs
FR TPEs
ATEX Bondables
Density modified

Side Benefit - Uniquely Experienced with all TPE chemistries
- Technical acumen to create custom formulations and alloys
- Culture of customer co-development – create what you NEED

WHAT TO TAKE AWAY FROM TODAY

RTP 2700 S
- SBCs
- Common stand-alone TPE; 20A to 90A hardness
- 2700 S – higher cost, lower gravity, translucent
- 2740 S-xx HF – lower cost, higher gravity, opaque
- Bonds to PP; Custom tailoring possible
- Temp limited ~100C

Permaprene™
- TPV Alloys
- 2800 B-xx HF – TPV offset in most non-auto applications
- 45A to 50D hardness, can be FDA
- 2840 B-xx – VA/VE where TPV over-engineered
- Good chemical resistance, smooth feel, extrusion

Nylabond™
- Polabond™
- 6091 – TPV based PA bonding, lots of auto approvals
- 6092 – in development, targeting Powertool market
- 6041 – TPV based polar bondable, high performance
- 6042-xx HF – Cost effective, excellent bonding

Specialty
- Elastomeric + Any RTP Company core competency
- Conductive to “typical” RTP Company sales process
APPLICATION GUIDELINES

- What is the operating temperature range for my application?
- What chemical and/or environmental exposures might there be?
- What are the key performance requirements for the application (beyond just shore hardness)?
- What kind of process will be used to produce final parts?

Thank You!

Paul Killian
pkillian@rtpcompany.com
(507) 474-5490

rtpcompany.com • rtp@rtpcompany.com