


# An Engineer's Guide to Specifying the Right Thermoplastic



Mark Bennick

Global Technology Manager

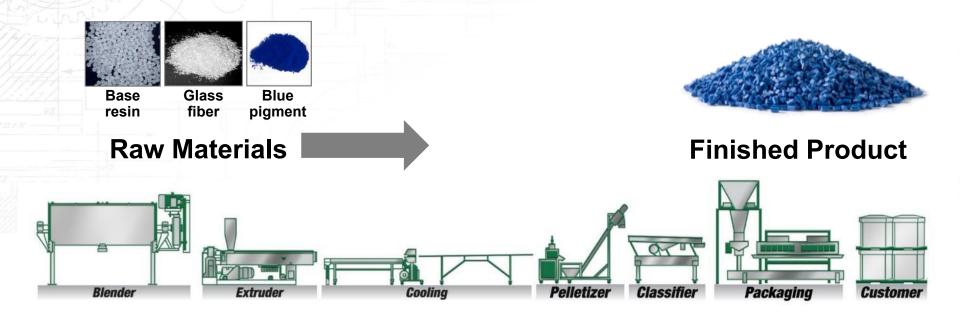


#### **AGENDA**

- 1. Define compounding
- 2. Plastic resin selection process
- 3. Application case studies
- 4. Compounding to enhance performance
- 5. New RTP Company technologies



#### INDEPENDENT SPECIALTY COMPOUNDER

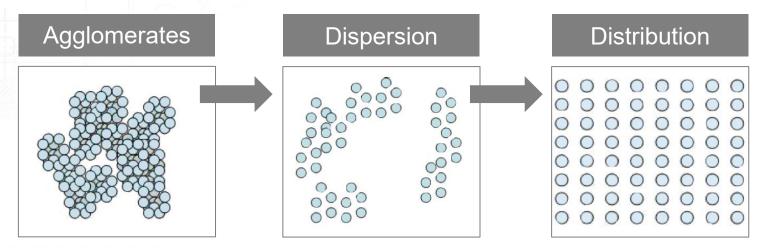

Compounder → We blend thermoplastic resins with fillers, additives, and modifiers

**Specialty** → We create engineered formulations

Independent → We are unbiased in our selection of raw materials



#### THE COMPOUNDING PROCESS






# **COMPOUNDING OBJECTIVES**

## Mixing

- Dispersive
- Distributive





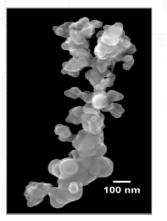
#### **COMPOUNDING EXTRUDERS**







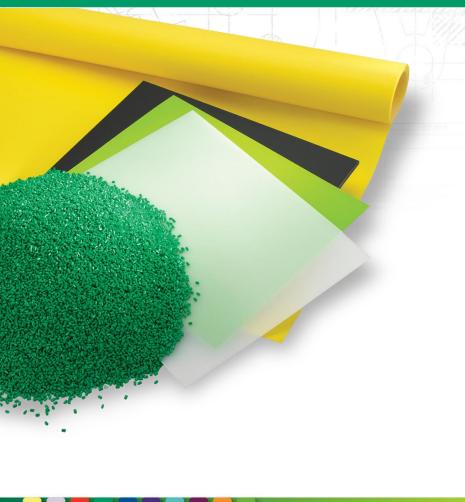



Twin Screw



Co-Kneader




#### **PUTTING COMPOUNDING INTO PERSPECTIVE**





- Conductive carbon black surface area = 130 m<sup>2</sup>/gram
- 34 grams carbon black = surface area of football field (4460m²)
- Dispersing a 20% carbon black compound is similar to evenly coating a football field with 136 grams of plastic!





#### Section 2:

# PLASTIC RESIN SELECTION PROCESS



#### THE DILEMMA

60 thermoplastic resins + 100 additives = 1000s of potential compounds



Which ONE do I choose for my application???



#### **PLASTIC SELECTION PROCESS**

Step 1: Use Resin Morphology

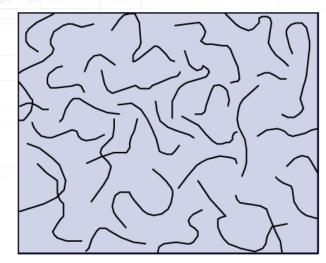
Step 2: Use Thermal and Cost Requirements

**Step 3:** Fine Tuning and Special Features

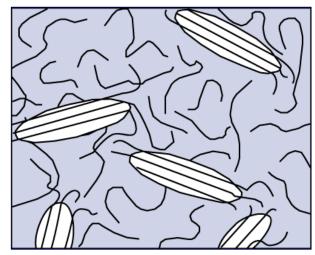


#### **PLASTIC SELECTION PROCESS**

Step 1: Use Resin Morphology


Step 2: Use Thermal and Cost Requirements

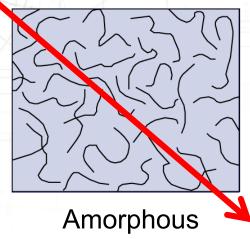
**Step 3:** Fine Tuning and Special Features

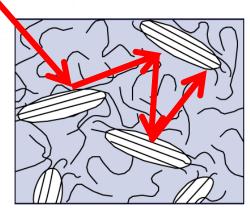



#### **MORPHOLOGY**

The form and structure the molecules of a polymer take upon solidification




Amorphous



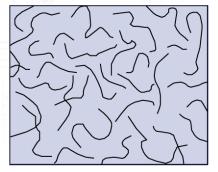

Semi-Crystalline

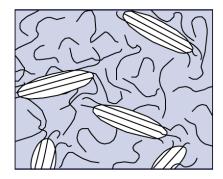


#### **MORPHOLOGY**






Semi-Crystalline


#### Compare

- Molecular packing (shrinkage)
- Resistance to molecular disentanglement (chemical/abrasion resistance)
- Melting characteristics (flow)
- Light refraction (opacity)



## **MORPHOLOGY CHARACTERISTICS**





|                     | Amorphous | Semi-Crystalline |
|---------------------|-----------|------------------|
| Low Shrinkage       | 0         |                  |
| Low Warpage         | 0         |                  |
| Tight Tolerances    | 0         |                  |
| Transparency        | 0         |                  |
| Mold Flow Ease      |           | 0                |
| Chemical Resistance |           | 0                |
| Wear Resistance     |           | 0                |

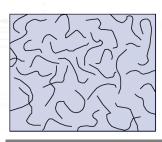


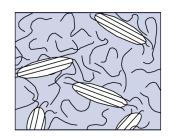
#### **MORPHOLOGY CHARACTERISTICS**

Lens?

Fuel Float?

**Precision Printer Chassis?** 

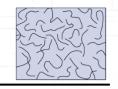

**Tool Housing?** 


Multiple Pin Connectors?

Pulley?

**Grease Fitting?** 

Laptop Cover?






| Amorphous | Semi-Crystalline |                     |
|-----------|------------------|---------------------|
| 0         |                  | Low Shrinkage       |
| 0         |                  | Low Warpage         |
| 0         |                  | Tight Tolerances    |
| 0         |                  | Transparency        |
|           | 0                | Mold Flow Ease      |
|           | 0                | Chemical Resistance |
|           | 0                | Wear Resistance     |



#### **MORPHOLOGY OF THERMOPLASTICS**



#### **Amorphous**

Polyetherimide (PEI)

Polyethersulfone (PES)

Polysulfone (PSU)

**Amorphous Nylon** 

Polycarbonate (PC)

Acrylic (PMMA)

Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

High Impact Polystyrene (HIPS)

Polystyrene (PS)





Polyetheretherketone (PEEK)

Polyphenylene Sulfide (PPS)

Polyphthalamide (PPA)

Polyamide (PA/Nylons)

Polybutylene Terephthalate (PBT)

Polyethylene Terephthalate (PET)

Acetal (POM)

Polylactic Acid (PLA)

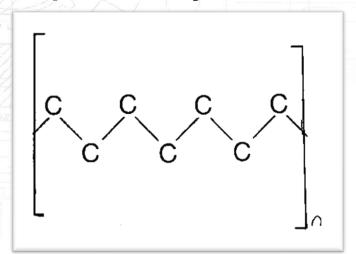
Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)



#### **PLASTIC SELECTION PROCESS**

Step 1: Use Resin Morphology


**Step 2:** Use Thermal and Cost Requirements

**Step 3:** Fine Tuning and Special Features



#### **MORPHOLOGY AND STRUCTURE**

#### **Aliphatic Polymer Chain**



Polyethylene (Tg -5 °F)

#### **Aromatic Polymer Chain**

Polyimide (Tg 500 °F)

The truss structure and strong chemical bonds of aromatic polymer results in the high temperature performance and resistance to burning.

## STRUCTURE OF SELECTED POLYMERS

#### Nylon 66

PPS

#### PEEK

#### Polycarbonate

Tg = 148 °C

#### Polyetherimide

#### PES

Tg = 230 °C



# MORPHOLOGY OF THERMOPLASTICS VS. THERMAL/COST

#### **Amorphous**



Polyetherimide (PEI)

Polyethersulfone (PES)

Polysulfone (PSU)

**Amorphous Nylon** 

Polycarbonate (PC)

Acrylic (PMMA)

Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

High Impact Polystyrene (HIPS)

Polystyrene (PS)

#### **Semi-Crystalline**



Polyetheretherketone (PEEK)

Polyphenylene Sulfide (PPS)

Polyphthalamide (PPA)

Polyamide (PA/Nylons)

Polybutylene Terephthalate (PBT)

Polyethylene Terephthalate (PET)

Acetal (POM)

Polylactic Acid (PLA)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)

Thermal and Cost Increases



#### **PLASTIC SELECTION PROCESS**

Step 1: Use Resin Morphology

Step 2: Use Thermal and Cost Requirements

**Step 3:** Fine Tuning and Special Features



#### **ENGINEERED & COMMODITY RESINS**

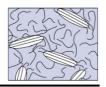


#### **Amorphous**

Amorphous Nylon

Polycarbonate (PC)

Acrylic (PMMA)


Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

High Impact Polystyrene (HIPS)

Polystyrene (PS)





Polyamide (PA/Nylons)

Polybutylene Terephthalate (PBT)

Polyethylene Terephthalate (PET)

Acetal (POM)

Polylactic Acid (PLA)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)



#### **AMORPHOUS RESINS**



**Morphology Features** -- Low shrink, low warp, tight dimensional tolerances, transparent (except HIPS & ABS), poor chemical and abrasion resistance, poor flow in thin mold sections

#### **Amorphous**

**Amorphous Nylon** 

Polycarbonate (PC)

Acrylic (PMMA)

Acrylonitrile Butadiene Styrene (ABS)

Styrene Acrylonitrile (SAN)

High Impact Polystyrene (HIPS)

Polystyrene (PS)

#### **Special Features**

Transparent/good chem. resistance

Optical transparency/high impact

Optical transparency/UV stable

High impact/high gloss/opaque

Transparent/mod. chem. resistance

Moderate impact/opaque

Transparent/brittle

Commodity (<\$1.50) • Engineered (\$1.50-\$4.00)



#### **SEMI-CRYSTALLINE RESIN**



**Morphology Features** -- Excellent chemical resistance, excellent abrasion resistance, good flow in thin mold sections, poor dimensions, opaque

#### **Semi- Crystalline**

#### **Special Features**

Nylon 6/12

Nylon 6/6

Nylon 6

Polybutylene Terephthalate (PBT)

Polyethylene Terephthalate (PET)

Acetal (POM)

Polylactic Acid (PLA)

Polypropylene (PP)

Polyethylene (HDPE, LDPE, LLDPE)

Less sensitive to humidity vs. 6 & 6/6

Better thermal vs. 6/humidity dep.

Hides GF/strong but humidity dep.

Good electricals/easier to mold

Good electricals/difficult to mold

Low wear & friction/high fatigue

Green/Low impact & thermal

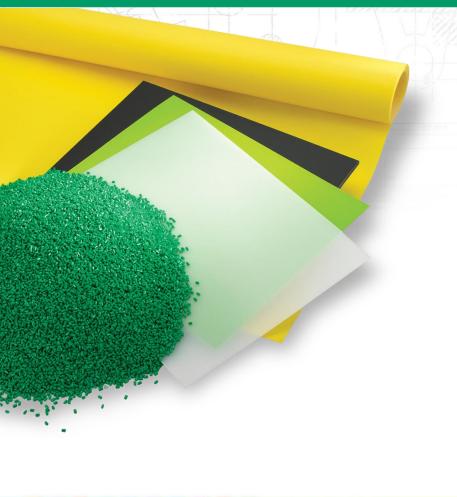
Poor low temp impact/mod thermal

Good low temp impact

Commodity (<\$1.50) • Engineered (\$1.50-\$4.00)



#### **PUTTING IT ALL TOGETHER**


Step 1: Use Resin Morphology

**Step 2:** Use Thermal and Cost Requirements

**Step 3:** Fine Tuning and Special Features

Test Your Knowledge With Application Examples





Section 3:

# APPLICATION CASE STUDIES



## CD jewel case

- Transparent
- Flat and dimensionally stable
- Low cost



**PS** 



#### Gas tank

- Good chemical resistance
- Good low temperature impact
- Low cost



#### **HDPE**



#### Auto tail lamp cover

- Transparent colors
- Dimensionally stable
- Excellent UV resistance
- Low cost



#### **PMMA**



#### **Plastic tumblers**

- Transparent
- Reasonable thermal and chemical resistance (dishwasher cycles)
- Low cost

#### SAN





## Sump pump housing

- Chemical resistance
- Reasonable thermal resistance
- Low cost

PP + GF





## Safety glasses

- Optical transparency
- High impact
- Moderate cost OK



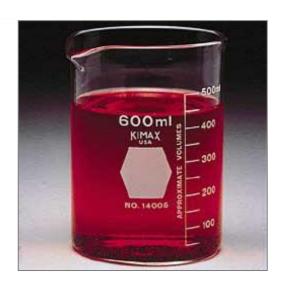
PC



#### **Hub odometer lens**

- Transparent
- Good chemical resistance
- Moderate-high cost OK




**Amorphous Nylon** 



#### **Chemical beakers**

- Excellent chemical resistance
- Low cost
- Transparent

????????





#### Nail gun housing

- Good chemical resistance
- Excellent strength, stiffness, and impact
- Good surface finish when reinforced
- Moderate cost OK

Nylon 6 + GF





#### **Automotive intake manifold**

- Chemical resistance
- Excellent strength, stiffness, and impact
- Moderate heat resistance
- Moderate cost OK

**Nylon 6,6 + GF** 





## Oil pan

- Chemical resistance
- Excellent strength, stiffness, and impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions and flat

????????





#### **Electrical connectors**

- Good flow in thin walls
- Excellent electrical properties
- Dimensionally stable in humidity
- Moderate cost OK

PBT (PET) + GF + FR





## **Conveyor rollers**

- Good abrasion resistance
- Low wear and friction
- Moderate cost OK



**Acetal** 



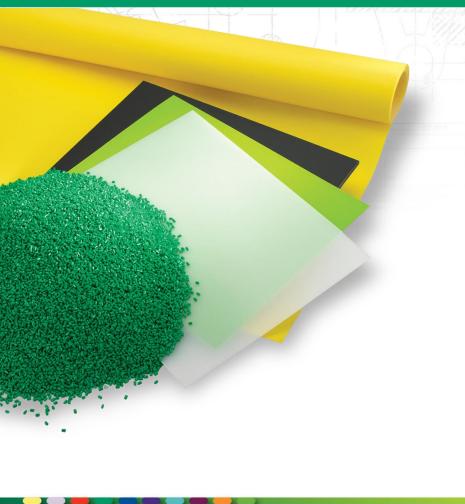


#### **Printer gears**

- Extremely tight dimensions
- Moderate cost OK
- Good abrasion resistance
- Low wear and friction

????????




#### Lawn tractor hood

- Tight dimensions and low warp
- Moderate cost OK
- Chemical resistance
- Good mold flow

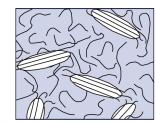
????????







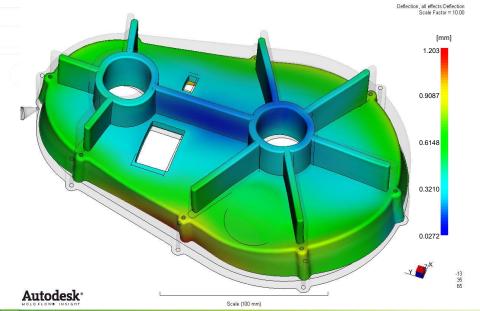
#### Section 4:


# COMPOUNDING TO ENHANCE PERFORMANCE



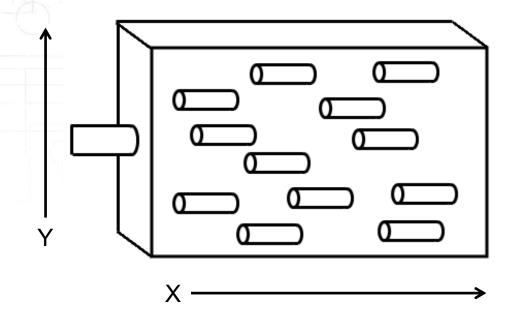
## **MORPHOLOGY DEFICIENCIES**

|                     | Amorphous | Semi-Crystalline |
|---------------------|-----------|------------------|
| Low Shrinkage       | 0         | D                |
| Low Warpage         | 0         | D                |
| Tight Tolerances    | 0         | D                |
| Transparency        | 0         | D                |
| Mold Flow Ease      | D         | 0                |
| Chemical Resistance | D         | 0                |
| Wear Resistance     | D         | 0                |





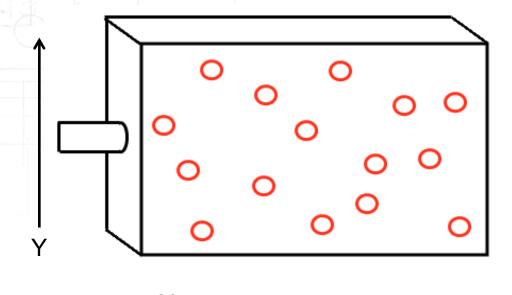




#### **DIMENSIONAL STABILITY**

Can we reduce shrink rate and improve dimensional stability of Semi-Crystalline resins?



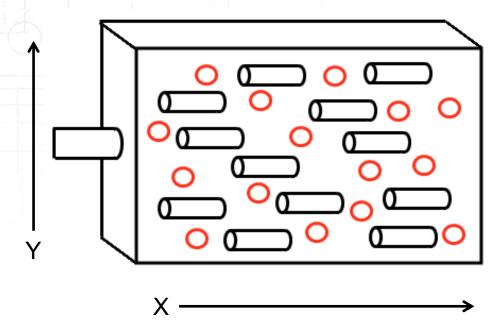



## FIBER REDUCES SHRINK



Shrink Rate X ≠ Shrink Rate Y → Warp




## WARP CONTROL



Shrink Rate X = Shrink Rate Y → Flat Part

But Low Strength!

#### STRENGTH & WARP CONTROL

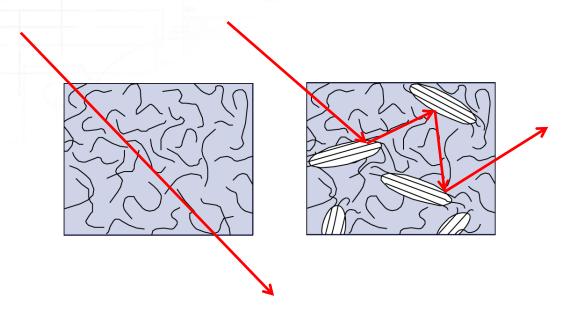


Common Loading = 15% Glass Fiber and 25% Mineral or Beads



## Oil pan

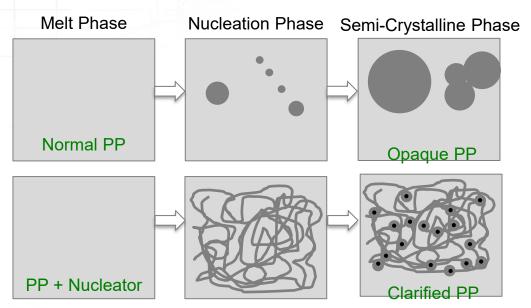
- Chemical resistance
- Excellent strength, stiffness, and impact
- Moderate heat resistance
- Moderate cost OK
- Extremely tight dimensions and flat




Nylon 6,6 + 15% GF + 25% Mineral



## **TRANSPARENCY**

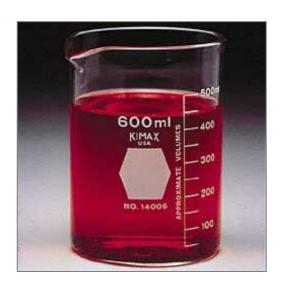

Can we make a Semi-Crystalline resin transparent?





#### **NUCLEATION/CLARIFICATION**

Compounding nucleator into PP or PE controls crystal size to less than wavelength of light = Transparency

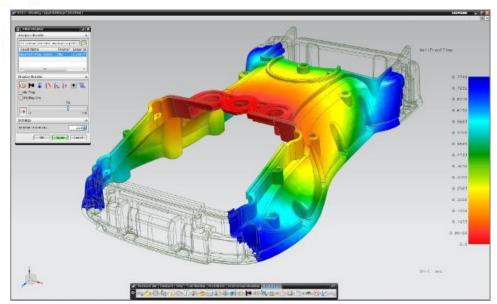





#### **Chemical beakers**

- Excellent chemical resistance
- Low cost
- Transparent

**PP + Nucleator** 






#### CHEMICAL RESISTANCE/MOLD FLOW

Can we improve chemical resistance and mold flow of amorphous resins?







## **ALLOYING**

## Alloy PC with ABS RTP 2500 A Series

|                       | PC          | PC/ABS |
|-----------------------|-------------|--------|
| Tensile Strength, psi | 9000 8900   |        |
| Flexural Mod, E6 psi  | 0.34        | 0.40   |
| Izod Impact, ft lb/in | 15 13       |        |
| HDT @ 264 psi,°F      | 270 210     |        |
| Fuel Resistance       | Poor        | Poor   |
| Melt Flow, gm/10 min  | 10 15       |        |
| Clarity               | Transparent | Opaque |



## **ALLOYING**

## Alloy PC With Polyester (PBT or PET)

RTP 2099 X 63578 B

|                       | PC          | PC/PBT |
|-----------------------|-------------|--------|
| Tensile Strength, psi | 9000 8700   |        |
| Flexural Mod, E6 psi  | 0.34        | 0.35   |
| Izod Impact, ft lb/in | 15          | 15     |
| HDT @ 264 psi,°F      | 270         | 250    |
| Fuel Resistance       | Poor        | Fair   |
| Melt Flow, gm/10 min  | 10          | 20     |
| Clarity               | Transparent | Opaque |



#### Lawn tractor hood

- Tight dimensions and low warp
- Moderate cost OK
- Chemical resistance
- Good mold flow

PC/PBT Alloy





## **WEAR RESISTANCE**

Can we make an amorphous resin wear resistant?



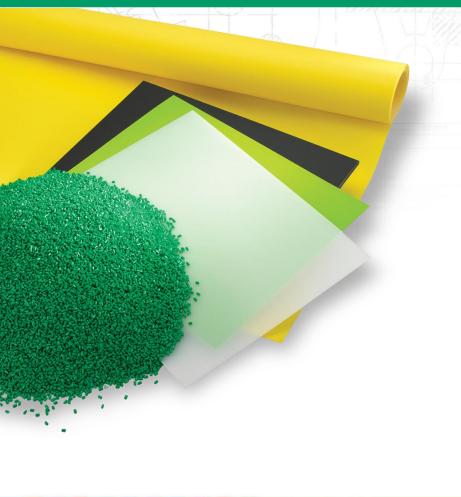


## **INTERNALLY LUBRICATED**

#### RTP 300 APWA

|                                 | PC   | RTP 300 APWA | Acetal |
|---------------------------------|------|--------------|--------|
| Wear Factor                     | 560  | 130          | 90     |
| Dynamic Coefficient of Friction | 0.60 | 0.33         | 0.40   |






#### **Printer gears**

- Extremely tight dimensions
- Moderate cost OK
- Good abrasion resistance
- Low wear and friction

## **Internally Lubricated PC**





#### Section 5:

# WHAT'S NEW? NEW TECHNOLOGIES



#### **NEW TECHNOLOGIES**

- Chemical resistant options for medical equipment housings
  - RTP 2000 HC FR A
- IR reflecting colors
  - Allow dark color plastics to remain cool when exposed to sunlight
- Non-PFAS internally lubricated wear resistant materials
  - APWA, ABR, SPR Compounds
- UL2043 plenum space materials
  - Low heat and smoke release for speaker housings, HVAC vents, Lighting, Wireless access points
- Sustainable materials
  - Post-industrial, Post-consumer recycled
  - Bio sourced materials









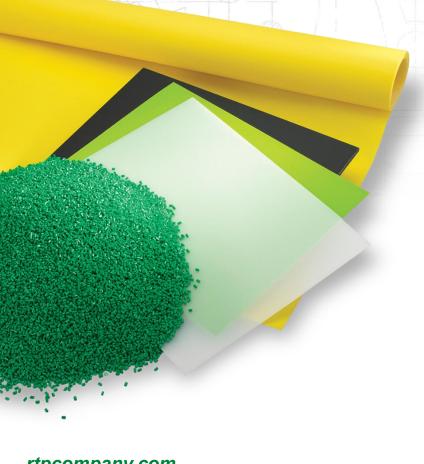
#### **REVIEW**

#### Intro to compounding

#### The dilemma

#### Resin selection procedure

- Resin morphology
- Resin cost and thermal performance
- Unique resin features


# **Application case studies Compounding in performance**

Overcoming resin deficiencies

Introduction to new technologies







## **THANK YOU!**

**Questions?** 

**Mark Bennick** 

mbennick@rtpcompany.com

rtpcompany.com

