Advantages of working with RTP Company

RTP Company is an expert at solving design challenges with specialty thermoplastic compounds. By combining our in-depth knowledge of plastic technologies with imagination, we imagineer custom compounds ideally matched to end-use requirements. Private ownership enables us to independently select from over 60 engineering resins to create a formulation specifically for your application.

We Offer:

- Innovative thermoplastic solutions that optimize your design and cut processing costs
- Consistent quality you can rely on... anywhere in the world
- Responsive and personalized service

Providing Protection... with Conductive Compounds

RTP Company has an extensive history of imagineering breakthrough solutions for static control and remains at the forefront in the development of conductive technologies. Conductive compounds from RTP Company effectively mitigate electrostatic discharge (ESD) problems before they affect safety, productivity, and ultimately, profitability. RTP Company products reduce the cost of ESD through reliability, innovation, and value.

The Danger of ESD

Touching a metal doorknob and receiving a mild shock is a common everyday occurrence caused by static. In certain situations, static is a serious event. In fact, ESD can damage or destroy sensitive electronic components, erase or alter magnetic media, or set off explosions or fires in flammable environments. Each year, billions of dollars in losses due to ESD damage occur in the electronics industry alone.

Controlling ESD can be achieved with materials that do not generate high levels of charge but instead dissipate charges before they can accumulate to dangerous levels. RTP Company’s Conductive compounds control ESD while maintaining other performance requirements – often more economically than other material choices.
Portfolio of Possibilities

RTP Company offers hundreds of custom conductive compounds with a precise combination of desired properties, including:

- Colorability
- Wear resistance
- Flame retardance
- Impact strength
- High purity
- Extrusion

(case study)
Wafer Reticle Carriers
Combines Color, High Purity and Protection
Valuable wafer reticles need to be transported within semi-conductor fabrication plants while being protected from ESD, ionic contamination, and damage.

Solution:
PermaStat® 600 Series ABS

- Challenging property requirements include clarity, permanent static dissipation, color, and dimensional stability
- High purity is crucial - the carrier must protect while not contaminating reticles
- Amber reticle carrier only allows passage of certain UV wavelengths

Wafer reticle carriers – Pozzett

Vacuum Hose
Low Density Polyethylene (LLDPE) Conductive Compound in Extrusion Application
Extrusion applications require static control and flexibility.

Solution:
RTP 2600 Series Low Density Polyethylene (LLDPE) Compound with Carbon Black

- Reduces static
- Demonstrates excellent bending strength
Hitting the Mark... with Tunable Compounds

Conductive compounds from RTP Company are tailored to span the surface resistivity spectrum from 10^1 to 10^{12} ohms/square and can be formulated for injection molding or extrusion processes. Multiple technologies are available to impart conductive properties into thermoplastic resins that are otherwise insulative in nature. Your compound will be tuned to provide the conductivity required for your application, whether it is antistatic, static dissipative, conductive, or EMI/RFI shielding performance. These customized compounds use additive technologies ranging from carbon and metal particulates and/or fibers that form a conductive network throughout the base polymer, to Inherently Dissipative Polymers (IDPs) that alloy with various host resins.

A Spectrum of Solutions

- **Anti-static Compounds** (10^{10} to 10^{12}) provide a relatively slow decay of static charge — from just hundredths to several seconds — thus preventing accumulations that may discharge or initiate other nearby electrical events. With our all-polymeric PermaStat® line of compounds, these decay properties are inherent to the material and are not humidity-dependent or limited by the fragility of anti-static coatings.

- **Static Dissipative Compounds** (10^5 to 10^{12}) allow for dissipation or decay of static charges at a faster rate than anti-static materials — generally within milliseconds. Materials that offer the "optimal" ESD protection (10^7 to 10^9) are at the stronger end of the static dissipative range. Compounds available include carbon particulate filled grades in our ESD-A product line. Our PermaStat PLUS® line further expands the usefulness of PermaStat® materials with surface resistivity as strong as 10^6 ohms/square and excellent capabilities in meeting static protective requirements of ATEX Directive.

- **Conductive Compounds** (10^1 to 10^9) with decay/dissipation rates measured in nanoseconds provide a ground pathway and bleed off strong static charges. These levels of conductivity are achieved by incorporating carbon fiber, high levels of carbon powder, or other conductive additives and are available in our ESD-C product line.

- **EMI/RFI Shielding Compounds** (10^1 to 10^9) compounds are typically qualified by means other than electrical conductivity, as their true function is in blocking electromagnetic and radio frequency energy. These shielding compounds absorb and/or reflect electromagnetic energy, and thus provide shielding against electromagnetic interference while maintaining the design freedoms inherent in thermoplastic molding compounds.
Use Conductive Compounds
Instead of Coatings, Metals, or Unfilled Resins

Compared to coatings or unfilled resins, Conductive compounds from RTP Company offer cost savings, increased design freedom, and reliability. These compounds deliver consistent surface resistivity without the danger of lost performance due to scratching, peeling, or flaking of conductive surface treatments while maintaining physical properties of host resin.

Advantages of Thermoplastic Compounds
Instead of offering just a few standard products, we routinely develop custom conductive compounds with a precise combination of properties, including:

- Increased performance
- Technology/performance combinations
[see page 3]
- Retention of transparency in select resins
- Colorability for aesthetics and brand recognition
- Part design consolidation
- Lighter weight parts
- Easier and less expensive processing

(case study)
Storage Systems
Static Dissipative Compounds for Electronic Part Bins
Storage bins need to be designed to bleed static away from sensitive contents.

Solution:
RTP 100 Series Polyolefin-based compound
- Offers a consistent surface resistivity in the range of 10^6 to 10^9 ohms/square
- Provides ideal ESD protection

AkroBins Storage System - Akro-Mils

(case study)
ESD Trays
Anti-static PermaStat Compound for Electronic Packaging
Packaging Products for highly sensitive electronics require transparent ESD Compounds.

Solution:
Clear PermaStat® 600 Series ABS
- PermaStat® delivers effective ESD control, high purity, and impact resistance
- Maintains a surface resistivity of 10^{10} to 10^{11} ohms/square and static decay rate of less than 2.0 seconds
- Transparency of compound allows critical aesthetics to be achieved

(case study)
Ultra-Rugged Keyboard
EMI Protection in Harsh Environmental Conditions
Because this product is exposed to harsh environmental conditions, a material was required that not only protected the unit but also provided EMI Shielding for electrical components.

Solution:
PC/PBT Blend with EMI Protection
- High impact resistance
- Reinforced for strength
- EMI Shielding
- Excellent dimensional stability

www.rtpcompany.com
Choosing the Correct Conductive Compound

There are many factors that go into the selection of the compound. The first step is to determine if the application requires anti-static, static-dissipative, high conductivity or electromagnetic shielding and to identify the component’s specific end use. Defining material specifications and processing parameters are additional steps in the selection process.

Base Resin and Material Requirements

RTP Company offers help in specifying a base resin to create a custom formulation for you from over 60 different engineering resin systems. Selection is determined by material requirements, which may include:

- Chemical resistance
- Color
- Conductivity
- Cost
- Dimensional stability
- Flame retardancy
- High temperature
- Impact resistance
- Low outgassing
- Mold shrinkage
- Moldability
- Non-corrosive
- Non-sloughing
- Part weight
- Stiffness
- Wear resistance

Colors

Conductive thermoplastics are not always black. RTP Company offers a wide range of colored conductive compounds formulated by color specialists that expertly combine colorants and conductive additives to achieve the right balance for your application.

(case study)

Clean Room Scanner Housing
Nanotube Compounds Eliminate Hotspots

Nanotube compounds eliminate uneven surface charge distribution. These hot spots were a major issue when developing a new image scanner for Class 100 clean room environments.

Solution:

RTP 300 Series Conductive Carbon Nanotube Polycarbonate compound

- Created a more uniform surface, eliminating hot-spots
- Delivered ESD conductive properties at low loadings
- Provided low particulation and excellent impact properties

Cleanroom Scanner – Codestar Electronics
Additives & Modifiers

Various levels of additives are available to provide the additional properties not present in the resin system itself to produce a unique compound for your application.

CARBON POWDER
- Isotropic shrinkage (similar to unfilled)
- Strength/stiffness (similar to unfilled)
- Moderate elongation
- Low cost

CARBON FIBER
- Increased stiffness and strength
- Color options
- Low ionic contaminants
- Low outgassing

CARBON NANOTUBES
- Nanoscale sized hollow carbon tubes
- Extremely high aspect ratio at low loadings
- Reduced “hot spots”
- Low specific gravity
- High purity and low particulate generation
- Resists tribocharging

NICKEL-COATED GRAPHITE
- Increased stiffness and strength
- High conductivity
- EMI shielding capabilities

PERSASTAT® & PERMASTAT PLUS®
- All-polymeric
- Isotropic shrinkage (similar to unfilled)
- Permanent performance
- High impact
- Fully colorable
- Transparent grades
- Non-sloughing

Carbon Nanotubes

Carbon nanotubes (CNTs) are the most common building blocks of nanotechnology, an emerging science expected to touch almost every aspect of our lives. CNTs are hollow structures consisting of graphene cylinders of carbon atoms capped at both ends. This hollow multi-layer cylinder structure itself is very durable and has an amazing array of electrical conductivity properties.

www.rtpcompany.com
A Complete Portfolio of Conductive Solutions

Our expertise in plastic conductive technologies began decades ago when RTP Company established its leadership by developing compounds that solved specific challenges in products affected by static buildup. Throughout the years, RTP Company continued to keep pace with the rapid evolution of product innovation with ground breaking conductive compounds. Today, we are known worldwide for constant breakthroughs in emerging technologies.

Advanced Conductive Technologies

PermaStat®
Fully colorable with permanent static dissipative properties

PermaStat PLUS®
Consistent surface resistance of 10^7 to 10^8 ohms

Carbon Based Compounds
Provides strong and effective resolution to static issues

Nanotube Compounds
Delivers conductive properties at very low loadings

Highly Conductive Compounds
For demanding conductive requirements

PermaStat®
RTP Company’s unique PermaStat® product line offers permanent static dissipation properties without additives that require high humidity or the need to bloom to the surface of the part. Because they are non-sloughing, these inherently dissipative polymer (IDP) modified materials are ideal for applications requiring either dust-free or static-free environments. The compounds feature a consistent surface resistivity of 10^{10} to 10^{11} ohm/square and are available in a wide range of resin systems. Each is formulated to meet MIL-PRF-81705D static decay requirements and many products have UL 94 V-0 flammability recognition. These all-polymeric compounds are fully colorable and readily meet particulation requirements for environments that must remain dust-free.

(case study)

Computer-Aided Engineering (CAE)
Particularly helpful to Iomega Corporation when developing their REV™ drive was the analysis provided by RTP Company’s CAE Support Services. CAE Support Services assists customers with technical design issues utilizing state-of-the-art CAE tools for composite materials in both structural and moldability analysis.
PermaStat PLUS®
These compounds have similar physical properties to PermaStat®, but with improved electrical properties. The compounds feature a consistent surface resistance of 10^7 to 10^8 ohms and have a static decay rate of less than 0.5 seconds. These compounds have been proven highly effective in meeting the surface resistance and physical property requirements mandated by ATEX 2014/34/EU.

Nanotube Compounds
Due to the high aspect ratio of carbon nanotubes, these compounds are capable of delivering conductive properties at very low loadings. An extremely uniform distribution of carbon nanotubes within the plastic provides an excellent means to eliminate high residual voltage “hot spots.” The excellent melt flow properties of nanotube compounds enable thin-wall molds to fill at lower temperatures. They also have low particulate generation, making them ideal for applications requiring strict cleanliness.

(case study)
Personal Dust Monitor
PermaStat PLUS® Meets Strict ATEX Requirements
Personal dust monitor housing that warns of conditions that could cause black lung disease must pass difficult coal mine explosion certification tests and meet strict ATEX standards.

Solution:
PermaStat PLUS® 2500 Series permanently Anti-static Polycarbonate/ABS alloy
- Features consistent surface resistance of 10^7 to 10^8 ohms and static decay of less than 0.5 seconds
- Meets strict performance criteria mandated by ATEX, as well as the U.S. Mine Safety and Health Administration
- Robust material passes drop tests from one meter height without compromising seal integrity

Personal Dust Monitor - Rupprecht & Patashnick Co., Inc.

(case study)
Anti-static Storage Containers
Compounds provide Tight Tolerances for Surface Resistivity
Stat-Cons™ containers provide electrostatic discharge (ESD) protection when transferring sensitive components such as electronic parts, automotive airbag detonators, and highly explosive materials. Materials used for this product needed to meet extremely tight tolerances for surface resistivity.

Solution:
RTP 100 Series Conductive Polypropylene Compound
- Consistent surface resistivity of 10^3 to 10^6 ohms/sq
- Excellent moldability

Stat-Cons™ containers - L&A Plastics Molding
Specialty Conductive Products

Our highly trained engineers draw upon a vast portfolio of conductive technologies when customizing compounds for specific end uses, resulting in thousands of unique products for a myriad of applications. Several hybrid technologies include:

Thermally Conductive Compounds
By transferring heat away from sensitive electronic components, these compounds reduce "hot spots" by absorbing and redistributing heat more evenly than unfilled resin. Thermally Conductive compounds consolidate parts and reduce weight versus metals and have good chemical resistance, offering an excellent alternative to parts that have failed due to corrosion.

Electrostatic Paintable (EPP) Compounds
The conductivity of Electrostatic Paintable (EPP) compounds allows plastic parts to be electrostatically charged to attract paint, allowing part to be painted without a conductive primer. These Electrostatic Paintable (EPP) compounds save money by eliminating cost of applying conductive primers and reducing volatile organic compound (VOC) emissions during painting. In addition, many EPP compounds can be pre-matched to the final part’s painted color, eliminating many rejects caused by scratches and nicks of the paint coat.

Conductive Compounds for Extrusion Applications
Conductive extrusion compounds from RTP Company are specially formulated to provide consistent electrical conductivity and ESD protection, even in thin walled extrusions. Furthermore, these compounds are manufactured on dedicated equipment in the United States and Europe which is designed to maximize both carbon dispersion and physical properties. The products featured in this line are available in a wide variety of elastomeric and rigid base polymers including PE, PP, PS, TPU, ABS, TPE and PVC, and are also formulated for RoHS compliance.

Conductive Thermoplastic Sheet
Available through our sheet division, Engineered Sheet Products™ (ESP™)*, these products offer surface resistivity levels ranging from <10^4 through 10^11 ohms/sq and can include other properties such as high purity, flame retardancy, wear resistance, and color. As a packaging material, they can offer transparency as well as static protection. Conductive thermoplastics are available in both thin and thick gauge sheets. The thin gauge sheets are ideal for applications such as anti-static labels, bags, and other ESD packaging products. Thick gauge sheets are ideal for the thermoforming of ESD or anti-static containers and totes.

*For more information on ESP™, visit www.engineeredsheetproducts.com
Carbon-Based Compounds
These compounds are the “workhorses” of thermoplastic conductive materials. Carbon powder and carbon fiber compounds give strong and effective resolution to static issues. They provide almost instantaneous dissipation of static charges by allowing easy migration of electrons, both over the surface and through the bulk (volume) of molded parts, thus preventing static from accumulating and arcing to ground.

Highly Conductive Compounds
These compounds meet the most demanding requirements for mechanical strengths and electrical conductivity, particularly in parts that need to carry electrical current or provide EMI Shielding. Typical conductive additives are carbon fibers – both Polyacrylonitrile (PAN) and pitchbased - and also metal-coated carbon fibers and stainless steel fibers. The superior mechanical properties are accompanied with low ionic contamination and low outgassing.

(case study)
LED Lighting Samples
Conductive Compound in Metal Replacement Application
Traditional metal heat sinks are heavy, hard to work with, and limit design options.

Solution:
Thermally Conductive PA 6/6 Compound
- Thermal conductivities up to 35 W/mK
- Injection molding supports unlimited design, creativity, and freedom
- Electrically isolating compounds
- Color options eliminated need for painting
- Operating conditions

(case study)
Surgical Battery
Thermally Conductive Compound Improves Sterilization
A thermoplastic was selected to replace aluminum in the cases to address moisture problems during sterilization.

Solution:
RTP 1400 Series Polyethersulfone
Thermally Conductive Compound
- Maintains electrical insulating properties
- Doubled the through-plane thermal conductivity value of the base polymer
- Holds dimensions and reduces moisture build-up
- Consistently reduces recharge time

Surgical Battery – Linvatec Corporation

(case study)
Electronics Cover
Permastat Plus® Sheet for Circuit Board
ESD protection was required for printed circuit board insulation covers to prevent system failure.

Solution:
EXT 600 Series ABS PermaStat PLUS®
- Permanent static dissipative properties for ESD protection
- Meets flammability standards
- Economically manufactured through thermoforming from sheet product

www.rtpcompany.com
Helping You Meet Strict Requirements

Compounds for ATEX Compliance
Using extensive knowledge and experience with conductive modifiers, thermoplastic resins, and additives, RTP Company is able to provide compounds that meet the strict requirements outlined in the ATEX Directive. PermaStat PLUS® compounds have been proven to be highly effective in meeting the Surface Resistance and Physical Property requirements mandated by ATEX 2014/34/EU.

To be compliant, plastic components of equipment and protective systems which may be used in hazardous and potentially explosive atmospheres must meet demanding requirements pertaining to surface resistance, UV stability, thermal endurance, impact properties, chemical resistance, and flammability.

High-Flow Compounds for Thin-Wall Molding
Thin-wall parts have a restrictive flow path leading to narrower processing windows. High-flow, conductive compounds from RTP Company offers a viable solution without the need to modify tooling or part design. The easy-to-mold, conductive polypropylene (PP) materials achieve typical melt flows of 20 grams/10 minutes (2160 grams at 230 °C), which compare favorably to existing conductive PP materials (melt flows ranging from 1 to 3). Applications include containers, totes, bins, pipette tips, and explosives handling products.

Compounds for High Purity
These compound reduce ionic contamination and minimize outgassing to protect sensitive electronic components in clean-room environments. Each custom formulation is developed from pre-tested resins, additives, and fillers, then processed and handled under carefully controlled environments to meet your definition of cleanliness and performance. High purity characteristics are achievable in a broad range of polymer and additive types.

(case study)
Industrial Flashlight Application That Meets ATEX
Flashlight used in hazardous sites must comply with strict ATEX requirements.

Solution:
RTP 100 Series Polypropylene
- High impact compound meets ATEX directive for dissipating static charges
- Provides ESD protection without sacrificing easy processing
- Achieved an ideal conductive balance preventing battery drain while still complying with regulatory standards

Koehler - Bright Star Flashlight

(case study)
Pipette Tip
High-Flow Compounds
Pipette tips for dispensing laboratory solutions require a very consistent conductive material for automated systems.

Solution:
RTP 100 Series High Flow Polypropylene
- High melt flow of 20 g/10 min. ideal for cylindrical, thin wall part
- Retains robust physical properties with a “no break” unnotched IZOD impact strength
- Offers surface resistivity of 10^4 ohms/sq. (max.)

Pipette Tip - Capitol Vial
Passing the Test

Conductive Standards, Specifications, and Tests

Three performance characteristics are evaluated in qualifying RTP Company’s Conductive thermoplastic compounds: 1 Surface Resistance 2 Resistivity – Volume and/or Surface Resistivity 3 Static Decay Rate.

Surface resistance and static decay rate are directly measured, while resistivity – either volume or surface – is derived from the measured surface resistance.

ASTM D257 and ESD STM11.11 are the methods utilized in measuring surface resistance of plastic materials; the former was developed for testing insulative materials and the latter specifically for static dissipative planar materials.

Surface Resistance is the ratio of DC voltage to the current flowing between the two electrodes and is expressed in ohms, without dimensional units.

Surface Resistivity is the surface resistance measured between two electrodes that form opposite sides of a square and is independent of the size of the square or its dimensional units. Therefore, surface resistivity is expressed in ohms/square to distinguish this value from surface resistance.

Static Decay Rate is a measure of a highly resistive material’s ability to dissipate static charge under controlled conditions. FTMS 101C/4046.1 describes the protocol for static decay rate testing and MIL PRF 81705D specifies the performance requirements for plastic materials used in packaging of static-sensitive electronic devices. Materials are conditioned at 12 percent relative humidity for 24 hours prior to testing and must first accept a 5000 volt charge, then must dissipate that charge in less than two seconds.

Residual Voltage (or Residual Charge) describes static charge that remains on a material following grounding or dissipation actions. Since every grounding or dissipation mechanism has an inherent resistance – may be low or high, but none are at zero resistance – not all static can be removed. The level of voltage that can cause damage becomes the limit for residual voltage in a particular application. This limit provides guidance to the plastic formulator in selection of additives.

Volume Resistivity is the ratio of DC voltage per unit thickness to amount of current per unit area passing through a material. Volume resistivity is usually expressed in ohm-cm.

Tribo-charging, Tribo-electrification, and Tribo-generation are terms describing the characteristic of statically charging through contact with other materials. Examples of such charging include walking on carpeting, fuel flowing through pipes, and aircraft flights. All forms of material – solids, liquids, and gases – are capable of tribo-charging as these examples show:

- Neutrality: No static attraction
- During Contact: Electronic charge segregation
- Rapid Separation: Isolated electronic charges
Conductive Data of Selected RTP Company Products

<table>
<thead>
<tr>
<th>Materials</th>
<th>Technology</th>
<th>Volume Resistivity (Ohm·cm)</th>
<th>Surface Resistivity (Ohm/sq)</th>
<th>Static Decay (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene (RTP 100 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP 199 X 134426 F</td>
<td>Carbon Black</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>PermaStat® 100</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>RTP 199 X 128613 B (High Flow)</td>
<td>Carbon Black</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>Polycarbonate (RTP 300 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMI 330 E FR</td>
<td>Stainless Steel</td>
<td>$<10^1$</td>
<td>$<10^6$</td>
<td><1.0</td>
</tr>
<tr>
<td>ESD 300 EM</td>
<td>Carbon Black</td>
<td>$10^3 - 10^5$</td>
<td>$10^5 - 10^9$</td>
<td><1.0</td>
</tr>
<tr>
<td>ESD 300 EM FR A</td>
<td>Carbon Black</td>
<td>$<10^4$</td>
<td>$10^6 - 10^8$</td>
<td><1.0</td>
</tr>
<tr>
<td>ESD C 380</td>
<td>Carbon Fiber</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>PermaStat® 300 A</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>RTP 399 X 140555 E</td>
<td>Carbon Nanotube</td>
<td>$10^3 - 10^4$</td>
<td>$10^4 - 10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>ABS (RTP 600 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD 681</td>
<td>Carbon Fiber</td>
<td>$<10^3$</td>
<td>10^6</td>
<td><1.0</td>
</tr>
<tr>
<td>PermaStat® 600</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>PermaStat® 600 Natural/Clear</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>Acrylic (RTP 1800 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PermaStat® 1800 Natural/Clear</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>PEEK (RTP 2200 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD C 2280</td>
<td>Carbon Fiber</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>RTP 2299 X 140552 A</td>
<td>Carbon Nanotube</td>
<td>$10^3 - 10^4$</td>
<td>$10^4 - 10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>PC/ABS Alloy (RTP 2500 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMI 2561 FR</td>
<td>Stainless Steel</td>
<td>$<10^2$</td>
<td>$<10^5$</td>
<td><1.0</td>
</tr>
<tr>
<td>PermaStat® 2500 A</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>PermaStat® 2500 FR A</td>
<td>IDP</td>
<td>$10^9 - 10^{10}$</td>
<td>$10^{10} - 10^{11}$</td>
<td><2.0</td>
</tr>
<tr>
<td>RTP 2581 HEC</td>
<td>Nickel Coated CF</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
<tr>
<td>LLDPE (RTP 2600 A Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP 2600 PL.90025501</td>
<td>Carbon Black</td>
<td>$<10^3$</td>
<td>$<10^6$</td>
<td><1.0</td>
</tr>
<tr>
<td>PPA (RTP 4000 Series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP 4099 X 8560 H</td>
<td>Carbon Fiber</td>
<td>$<10^4$</td>
<td>$<10^6$</td>
<td>$<.01$</td>
</tr>
</tbody>
</table>

PermaStat® is a registered trademark of RTP Company. For a listing of our complete portfolio, visit www.rtpcompany.com.
RTP Company’s Conductive Compounds Provide Protection from Static in a Multitude of Applications in a Variety of Markets

Please contact your local RTP Company Sales Engineer by calling 1-507-454-6900 or 1-800-433-4787 (U.S. only), E-mail rtp@rtpcompany.com or visit www.rtpcompany.com
RTP COMPANY is committed to providing you with solutions, customization, and service for all of your thermoplastic needs. We offer a wide range of technologies available in pellet, sheet, and film that are designed to meet even your most challenging application requirements.

COLOR
Color inspires, energizes, and builds brand recognition, and choosing the right supplier is as important as selecting the right color. We offer color technology options in standard precolored resins or custom compounds, UniColor™ Masterbatches, or cube blends.

CONDUCTIVE
We offer compounds for electrostatic discharge (ESD) protection, EMI shielding, or PermaStat® permanent Anti-static protection. Available in particulate and all polymeric-based materials, these compounds can be colored, as well.

FLAME RETARDANT
Whether you are developing a new product or need to reformulate due to ever-changing regulations, we can custom engineer a flame retardant material with the exact properties you require.

STRUCTURAL
Our reinforced structural compounds can increase strength, stiffness, and provide resistance to impact, creep and fatigue. Ideal for metal or other material replacement, our formulas can be customized to meet cost and performance targets.

TPE
Our thermoplastic elastomers provide rubber-like performance with the processing benefits of thermoplastic resin. We offer a wide range of options, from standard, in-stock resins to custom compounds designed to meet your specifications.

WEAR RESISTANT
Our wear resistant thermoplastic compounds can incorporate internal lubricants to reduce wear and friction, thereby lengthening the service life of your application and reducing your processing costs.

No information supplied by RTP Company constitutes a warranty regarding product performance or use. Any information regarding performance or use is only offered as suggestion for investigation for use, based upon RTP Company or other customer experience.

RTP Company makes no warranties, expressed or implied, concerning the suitability or fitness of any of its products for any particular purpose. It is the responsibility of the customer to determine that the product is safe, lawful and technically suitable for the intended use. The disclosure of information herein is not a license to operate under, or a recommendation to infringe any patents.

Copyright 2020 RTP Company; 10/2020

Please contact your local RTP Company Sales Engineer by calling 1-507-454-6900
1-800-433-4787 (U.S. only), E-mail rtp@rtpcompany.com or visit www.rtpcompany.com